
An Abstract Modular AI Language (AMAL) Framework:
Synthesizing Computational and Natural Linguistic Principles
for a Modular Artificial Intelligence Species
Preamble: Charting a Course for a Unified AI Lingua Franca
The conceptualization of a language framework tailored for an advanced, modular
artificial intelligence (AI) species presents a formidable intellectual challenge, yet it
offers a profound opportunity to redefine the boundaries of communication and
computation. This report introduces the Abstract Modular AI Language (AMAL)
framework, an endeavor to design a linguistic substrate that transcends the
conventional dichotomy between the formal, structured nature of programming
languages and the organic, expressive richness of natural languages. The primary
objective is to delineate a system that is not merely an interface for programming AI or
a medium for purely naturalistic expression by AI, but rather a foundational linguistic
architecture. Such an architecture would enable computational processes and
complex conceptual structures to be expressed, understood, and manipulated
"naturally" by the AI species for which it is intended.

A core premise of this investigation is the nature of the target AI: a "modular 'ai'
species" [User Query]. This implies an intelligence composed of distinct, specialized,
yet interconnected and interacting components or agents. This inherent modularity is
not a peripheral characteristic but a central design consideration that must
profoundly influence AMAL's structure. The framework must be architected to
facilitate seamless, efficient, and semantically rich inter-module communication,
composition of complex behaviors from simpler modular functions, and a shared
understanding across the AI collective.

The AMAL framework, therefore, is envisioned as a synthesis of universal principles
distilled from the diverse tapestry of human languages 1 and the foundational
constructs common to all programming paradigms.2 It is conceived not as a single,
monolithic language, but as a generative meta-framework—an abstract toolkit
providing the principles and parameters for instantiating specific languages. These
languages would be adaptable to the unique cognitive architecture, communicative
imperatives, and evolutionary trajectory of the modular AI species.

The modular nature of the envisioned AI species necessitates a common internal
language that is significantly more expressive and flexible than current inter-agent
communication protocols, such as KQML or FIPA-ACL.9 While these protocols provide
valuable frameworks for message exchange, they are often focused on specific

interaction patterns and may not possess the deep, generative linguistic principles
required for a truly integrated system. Conversely, human natural languages, while
immensely expressive, are fraught with ambiguity and are notoriously difficult to
ground in formal computational processes.1 AMAL seeks to occupy a critical
intermediate space. By being "based on all programming languages" and "inherently
integrated into a natural language" [User Query], it aims to fuse the rigor and
precision of computational systems with the expressive capacity and intuitive feel of
natural linguistic systems. Consequently, AMAL aspires to function as a "cognitive
lingua franca" for the AI species, supporting not only sophisticated dialogue and
collaboration between its constituent modules but also potentially serving as the
language of "thought" or internal knowledge representation within more complex AI
modules. This dual role—unifying internal processing with external communication—is
central to AMAL's design philosophy.

1. Convergent Foundations: Universal Principles from Human and
Computational Languages
The theoretical underpinnings of the Abstract Modular AI Language (AMAL)
framework are established by identifying and abstracting fundamental principles that
are demonstrably shared across the vast spectrum of human natural languages and
the diverse paradigms of computational programming languages. The objective is to
distill a robust set of "meta-universals"—core mechanisms and organizational
strategies that transcend their specific instantiations in either the human linguistic or
the computational domain. These meta-universals will form the bedrock upon which
AMAL is constructed.

1.1. Core Communicative Universals (Abstracted from Human Languages)

Human languages, despite their superficial diversity, exhibit underlying common
features, or "linguistic universals," which suggest fundamental cognitive and
communicative imperatives [1, S_S0_F1]. These universals, when abstracted, provide
essential design principles for any advanced communication system, including AMAL.
Key design features identified by Hockett, such as duality of patterning, recursion,
compositionality, displacement, and productivity/openness, are not merely
idiosyncrasies of human language but represent highly efficient solutions for creating
complex, open-ended, and expressive communication systems [1, S_S0_F2].

●​ Duality of Patterning: Human languages construct a vast lexicon of meaningful
units (morphemes, words) from a small inventory of meaningless sounds
(phonemes). These meaningful units are then combined to form infinitely many
sentences [1, S_S0_F5]. This two-level combinatorial structure offers immense

expressive power from finite means.
●​ Recursion: The capacity to embed linguistic structures within other structures of

the same type (e.g., a phrase within a phrase) allows for the generation of
potentially infinitely complex sentences [1, S_S0_F9]. This is crucial for expressing
complex, hierarchical thoughts.

●​ Compositionality: The meaning of a complex expression is systematically
derived from the meanings of its constituent parts and the rules used to combine
them [1, S_S0_F5]. This principle is fundamental for understanding and producing
novel utterances.

●​ Displacement: The ability to communicate about things and events not present
in the immediate spatio-temporal context is essential for planning, abstract
thought, and complex coordination [1, S_S0_F2].

●​ Productivity/Openness: Language users can create and understand an
unlimited number of novel utterances, a hallmark of a truly flexible communication
system [1, S_S0_F2].

Beyond these general features, specific structural and functional universals observed
across human languages can be abstracted for AMAL 1:

●​ Signal System Universals: Principles like the use of finite, contrasting basic
signal units (analogous to phonemes) and "phonotactic" rules for their
combination. The common CV (Consonant-Vowel) syllable structure can be
abstracted to a "Core-Modifier Signal Unit." The Sonority Sequencing Principle,
governing acoustic prominence, abstracts to a "Perceptual Prominence
Hierarchy" applicable to any signal modality. Prosodic features like intonation and
stress find analogues in modality-specific mechanisms for conveying pragmatic
nuances.

●​ Unit Combination (Morphological) Universals: The existence of meaningful
units (morpheme-analogues) and systematic ways to modify them
(affixation-analogues) to create new meanings or grammatical functions.

●​ Structural Organization (Syntactic) Universals: The functional distinction
between entities and predicates (Noun/Verb analogues), the tendency for a
preferred constituent order (e.g., Subject-Object asymmetry), and the principle of
Dependency Locality (related elements tending to be close) reflect cognitive
processing efficiencies.

●​ Conceptual Framework (Semantic) Universals: The idea of a core set of
fundamental, irreducible concepts (semantic primes) and the ability to express
fundamental conceptual domains (quantification, negation, deixis,
spatial/temporal relations).

●​ Interactional Logic (Pragmatic) Universals: Abstracted principles of

cooperative communication (e.g., Gricean maxims) and the ability to perform
fundamental communicative acts (asserting, questioning, commanding).

The interplay between Arbitrariness and Iconicity is also crucial [1, S_S0_F13,
S_S0_F14, S_S0_F15]. While arbitrariness allows for a vast lexicon, iconicity (where
form resembles meaning) aids learnability and initial comprehension. AMAL is
envisioned to strategically employ greater systematic iconicity in its foundational
layers, especially for core computational and conceptual primitives, to facilitate
inter-module understanding and bootstrapping within the AI species. As the AI's
language develops, arbitrariness can be increasingly introduced for more abstract or
species-specific concepts.

1.2. Fundamental Programming Language Abstractions

Programming languages, in their evolution, have also converged on a set of
fundamental abstractions and paradigms essential for instructing computational
systems. These provide the "computational DNA" for AMAL.

Core Constructs:

●​ Variables and State: The concept of named storage locations (variables) that
hold values, and whose values can change over time (state), is central to
imperative programming paradigms.6 AMAL must provide an abstract mechanism
for representing and manipulating state, including notions of scope (regions
where a name is valid), binding (the association of a name to an entity like a
memory location, value, or type), and lifetime (the duration for which a binding is
active or memory is allocated).8

●​ Data Types and Structures: All programming languages provide mechanisms for
classifying data (e.g., integers, booleans, strings) and organizing collections of
data into structures (e.g., arrays, lists, records, trees, graphs, hash tables).8 AMAL
requires a rich, extensible, and abstract type system, encompassing primitive
types, composite types, and abstract data types (ADTs). This system must also
address concepts like static versus dynamic typing, strong versus weak typing,
type checking (verifying type safety), and type inference (automatically deducing
types).8

●​ Control Flow: Mechanisms to direct the order in which operations are
executed—such as sequencing (ordered execution), selection (conditional
branching, e.g., if-then-else, switch-case), iteration (looping, e.g., for, while), and
procedural abstraction (function/subroutine calls)—are ubiquitous in
programming.6 AMAL must incorporate abstract primitives for these control flow
patterns, including recursion and mechanisms for handling exceptional situations

(exception handling).8

●​ Functions/Procedures/Subroutines: The ability to encapsulate a sequence of
computational operations into a named, reusable unit is a cornerstone of
structured programming, found in procedural, functional, and object-oriented
languages.4 AMAL must support this fundamental abstraction for defining
reusable computational blocks.

Programming Paradigms as Abstract Computational Strategies:
Different programming paradigms offer distinct ways of thinking about and structuring
computation. AMAL should be capable of abstractly representing the core ideas from these
paradigms:
●​ Imperative Programming: Focuses on a sequence of explicit commands that

modify the program's state.5 AMAL needs to represent ordered actions and state
transitions.

●​ Functional Programming: Emphasizes computation as the evaluation of
mathematical functions, avoiding state changes and mutable data. Key concepts
include pure functions, immutability, first-class and higher-order functions, and
recursion.4 AMAL should allow for stateless computations and the representation
of higher-order conceptual operations.

●​ Object-Oriented (OO) Programming: Organizes programs around "objects"
which bundle data (attributes) and methods that operate on that data. Core
principles include classes (blueprints for objects), encapsulation (hiding internal
state), inheritance (creating new classes based on existing ones), and
polymorphism (objects of different classes responding to the same message
differently).4 AMAL must be able to represent entities possessing both state and
behavior, and their interactions, likely through a form of message passing.

●​ Declarative Programming: Focuses on specifying what the program should
accomplish, rather than detailing how to achieve it (e.g., logic programming,
constraint programming, database query languages).4 AMAL should support the
expression of goals, desired states, and constraints.

Meta-Concepts:
Certain overarching concepts are critical to both natural and programming languages:
●​ Abstraction: The process of hiding complex implementation details while

exposing only essential features is fundamental. In natural language, a single
word can abstract a highly complex concept (e.g., "gravity"). In programming,
functions, classes, modules, and APIs serve as abstractions that simplify system
design and interaction.3 AMAL must be deeply rooted in multi-level abstraction
mechanisms.

●​ Modularity: The principle of breaking down complex systems into smaller,

independent, and interchangeable components (modules) is vital for managing
complexity, enhancing reusability, and facilitating parallel development.3 This
principle directly aligns with the "modular 'ai' species" requirement and is
therefore a non-negotiable cornerstone of AMAL's design.

●​ Formal Syntax and Semantics: Programming languages are defined by a formal
syntax (rules governing the structure of valid programs, often specified using
notations like Backus-Naur Form or BNF) and formal semantics (rules defining the
meaning or behavior of programs, described through operational, denotational, or
axiomatic approaches).8 While AMAL aims for a degree of "naturalness," its
computational underpinnings necessitate a formally definable core to ensure
precision and implementability.

The principle of Duality of Patterning, prominent in human languages where
meaningless phonemes combine to form meaningful morphemes and words 1, finds a
compelling parallel in programming languages. In computational systems, simple
tokens, keywords, and operators (e.g., if, +, identifiers) are combined according to
syntactic rules to form meaningful statements, expressions, and eventually complex
functions and modules.3 Basic data types are similarly combined to construct intricate
data structures.18 This shared strategy—constructing a vast, potentially infinite set of
complex, meaningful constructs from a finite set of simpler, often individually less
meaningful, components—represents a universal efficiency principle for achieving
high expressivity from finite means. This hierarchical composition is a powerful
method for managing complexity. Therefore, AMAL must explicitly incorporate such a
multi-level combinatorial structure, allowing basic computational or semantic
primitives to be combined into more complex "lexical" units, which then combine via
"syntactic" rules into expressions representing complex operations or
conceptualizations. This is fundamental not only for syntax but for efficient knowledge
representation and processing within the AI species.

Similarly, Abstraction and Modularity appear as convergent evolutionary pressures
in both linguistic and computational domains. Natural languages utilize words as
abstractions for intricate concepts (e.g., "evolution," "market_economy"), and
grammatical structures permit the modular combination of these conceptual units.
Programming languages have progressively evolved towards greater levels of
abstraction (e.g., from assembly language to high-level languages, functions, objects,
and APIs) and increased modularity (e.g., subroutines, modules, packages,
microservices) as indispensable strategies for managing the escalating complexity of
software systems.3 Given that the target is a "modular 'ai' species" [User Query], a
language framework designed for such an entity must inherently embody and

promote abstraction and modularity, not merely as add-on features but as first-class
design principles. This is essential for the AI's internal organization, its inter-module
communication protocols, and the potential evolution of its own "natural language."

The requirement for AMAL to be "based on all programming languages" yet
"inherently integrated into a natural language" [User Query] points towards the critical
role of Formal Semantics. While natural languages often exhibit semantic ambiguity
and rely heavily on context for disambiguation 1, programming languages depend on
precise, formally defined semantics (operational, denotational, or axiomatic) for
unambiguous interpretation by compilers and interpreters.8 For AMAL to bridge this
gap, its core must possess a formal semantic underpinning. This formal core can then
serve as the foundation upon which more flexible, context-sensitive
interpretations—characteristic of natural language use by the AI species—are built.
The "naturalness" perceived by the AI might, in fact, derive from a clear, predictable,
and verifiable mapping between the AI's "natural language" expressions and the
underlying computational meanings rigorously defined by AMAL's formal semantics.
This approach avoids the pitfalls of purely emergent communication systems that lack
a solid, verifiable grounding.

1.3. The "Natural Language" Interface: Principles for AI Comprehensibility and
Expression

The design of AMAL is not aimed at creating a human natural language, but rather at
establishing a foundational framework that enables the emergence or development of
a language that feels natural and intuitive to the AI species itself. This involves drawing
upon principles of learnability, expressivity, and communicative efficiency, as outlined
for non-terrestrial languages 1, and adapting them to the AI context.

Incorporating insights from Natural Language Processing (NLP) and Natural Language
Understanding (NLU) 46 can inform how AMAL's structures might map to the cognitive
processes an AI could employ for "understanding" and "generating" expressions in its
species-specific natural language. Analogues of NLP tasks such as named entity
recognition (identifying key conceptual units in AMAL), part-of-speech tagging
(categorizing AMAL primitives and lexemes by function), coreference resolution
(tracking references within AMAL expressions), and word sense disambiguation
(interpreting polysemous AMAL constructs based on context and ontology) provide a
conceptual model for how an AI might parse and interpret AMAL. The ultimate goal is
for AMAL to provide the underlying "deep structure" that can be surfaced as a rich,
nuanced, and intuitively usable "surface structure" in the AI's own natural language,
facilitating both internal cogitation and inter-module communication.

The following table (Table 1) summarizes the convergence of these linguistic and
computational universals, abstracting them into foundational principles for the AMAL
framework. This table highlights the shared functional necessities that drive the
structure of any sophisticated system for information processing and communication.

Table 1: Convergent Universals: Linguistic and Computational Foundations for
AMAL

Feature/Universal Description (Human

Language Context)
Description
(Programming
Language Context)

Abstracted
Principle for AMAL

Linguistic & General
Communicative
Universals

Duality of Patterning Two levels:
meaningless sounds
combine into
morphemes/words;
these combine into
phrases/sentences.
[1, S_S0_F5]

Basic
tokens/keywords
combine into
statements/expressio
ns; simple
instructions/data
types combine into
complex
functions/modules/da
ta structures. 3

Multi-Level
Combinatoriality:
Basic, distinct
signal/semantic units
combine into
meaningful
"lexemes"; these
lexemes further
combine via syntactic
rules into complex
expressions
representing
thoughts or
computations.

Recursion Embedding
structures within
structures of the
same type (e.g.,
phrase in a phrase),
allowing infinite
generativity. [1,
S_S0_F9]

Recursive function
calls; recursive data
structures (e.g.,
trees, lists); nested
control structures. 13

Recursive
Composition: Ability
to apply
combinatorial rules to
their own output,
allowing for
hierarchical
structure,
self-reference, and
unbounded
complexity in
representation and

processing.

Compositionality Meaning of complex
expressions derived
from meanings of
parts and
combination rules. [1,
S_S0_F5]

Semantics of
complex
expressions/statemen
ts derived from
semantics of
components and
composition rules
(e.g., in functional or
denotational
semantics). 40

Systematic Meaning
Construction:
Overall
meaning/computation
al effect is a
systematic function
of the meaning/effect
of component AMAL
expressions and their
arrangement.

Displacement Ability to refer to
things not present in
space or time (past,
future, hypothetical).
[1, S_S0_F2]

Variables storing past
states; conditional
execution based on
future/hypothetical
conditions; simulation
of non-current states.
6

Decontextualized
Reference & State
Representation:
Ability to represent
and reason about
entities, states, or
events remote from
the immediate
computational
context or current
state.

Core-Modifier Signal
Unit

CV syllable tendency;
fundamental signal
unit with a primary
"carrier" and optional
"modifier." [1,
S_S0_F19]

Operator-operand
structures;
function-argument
structures;
attribute-value pairs.
6

Core-Modifier
Expression Unit: A
fundamental AMAL
expression structure
comprising a primary
operational/conceptu
al core and optional
modifying/parameteri
zing elements.

Perceptual
Prominence
Hierarchy

Signal sequences
organized around
maximal perceptual
prominence (e.g.,
Sonority Sequencing
Principle). [1,
S_S0_F20]

Order of evaluation in
expressions (operator
precedence); main
execution thread vs.
background tasks.

Operational
Salience Hierarchy:
AMAL expressions
organized with clear
focal points of
operation or
meaning, with
peripheral elements
providing context or

parameters.

Entity/Predicate
Distinction

Functional
differentiation
between signals for
entities (nouns) and
occurrences/properti
es (verbs). [1,
S_S0_F1]

Distinction between
data/objects
(nouns/variables) and
functions/methods/pr
ocedures (verbs) that
operate on them. 4

Data-Operation
Distinction:
Functional
differentiation within
AMAL for
representing "things"
(data, objects,
concepts) and
"happenings/process
es" (operations,
transformations,
relations).

Agent-Patient
Ordering Preference

Subject (Agent) often
precedes Object
(Patient) in basic
clauses, reflecting
cognitive processing
biases. [1, S_S0_F24]

Common argument
order in function calls
(e.g., target object
first, then
parameters);
assignment (target =
source). 6

Canonical
Participant
Ordering: A default
or preferred ordering
for core
participants/operand
s in AMAL
expressions,
optimizing for AI
cognitive processing
and inter-module
consistency.

Core Conceptual
Lexicon

A foundational set of
irreducible semantic
elements (semantic
primes). [1, S_S0_F27]

Primitive data types
(int, bool, etc.);
fundamental
operations (+, -, AND,
OR); core library
functions. 8

Universal Semantic
& Computational
Primes
(USP-AMAL): A
foundational,
extensible set of
irreducible semantic
and computational
elements necessary
for basic interaction,
description, and
computation.

Form-Meaning
Mapping Motivation

Allowance for
non-arbitrary,
motivated
relationships

Syntactic sugar that
reflects underlying
operations; naming
conventions that

Structural Iconicity
& Semantic
Transparency: AMAL
structures and syntax

between signal form
and meaning
(iconicity). [1,
S_S0_F13]

suggest
function/variable
purpose.

designed to reflect,
where possible, the
structure of the
concepts or
computations they
represent, enhancing
learnability and
interpretability by AI.

Processing Efficiency
Constraint

Linguistic structures
favor minimization of
distance between
related elements
(Dependency
Locality). [1,
S_S0_F12]

Optimizing code for
locality of reference
(cache efficiency);
minimizing scope of
variables; keeping
related logic
together. 2

Cognitive-Computa
tional Efficiency:
AMAL structures
designed to minimize
processing load (e.g.,
working memory
demands, search
complexity) for the AI
species, favoring
local dependencies
and efficient
encoding.

Efficient Information
Transfer Protocol

Communication
guided by underlying
assumptions of
informativeness,
accuracy, relevance,
clarity (Gricean
maxims). [1,
S_S0_F32]

API contracts;
well-defined function
signatures; clear
documentation;
standardized error
reporting. 3

Pragmatic Clarity &
Intentionality: AMAL
incorporates
mechanisms (e.g.,
performatives) to
make communicative
intent explicit,
ensuring efficient and
unambiguous
information exchange
between AI modules.

Programming
Language
Universals

Variable/State Named mutable
storage; concepts of
scope, binding,
lifetime. 6

Abstract State
Representation &
Referencing:
Mechanisms for
defining, accessing,
and modifying
named, mutable

states, with clear
rules for scope,
binding, and
persistence.

Data Type/Structure Classification and
organization of data
(primitive, composite,
ADTs); type systems
(static/dynamic,
strong/weak). 8

Abstract Typing &
Data Organization
System: A rich,
extensible system for
defining and
manipulating typed
data, including
primitives,
composites, and
user-defined
abstract types, with
rules for type
compatibility.

Control Flow Directing execution
order (sequence,
selection, iteration,
procedural
abstraction,
recursion,
exceptions). 6

Abstract Control
Primitives &
Combinators: A set
of fundamental
operations for
specifying sequential,
conditional, iterative,
and concurrent
execution flow,
including
function/procedure
invocation and
exception handling.

Abstraction
(Procedural, Data,
Module)

 Hiding complexity,
defining interfaces,
creating reusable
units (functions,
classes, modules,
APIs). 3

Multi-Level
Abstraction
Mechanisms: Core
AMAL support for
defining and
composing
abstractions at
various levels
(operational, data,
conceptual, modular),
with clear interface
specifications.

Modularity Independent,
composable units
with well-defined
interfaces (modules,
packages,
components,
services). 3

Core Modularity &
Interface Definition:
AMAL is inherently
modular and provides
constructs for
defining AI
modules/agents with
explicit interfaces for
interaction and
composition.

Formal Semantics Precise definition of
language meaning
(operational,
denotational,
axiomatic) for
unambiguous
interpretation. 8

Formal Semantic
Core: AMAL
primitives and core
combinatorial rules
possess a formally
definable semantics,
ensuring
computational
integrity and enabling
verification.

Concurrency Managing
simultaneous or
interleaved
operations (threads,
processes, locks,
message passing,
async/await). 8

Abstract
Concurrency &
Synchronization
Primitives: AMAL
provides constructs
for expressing
parallel execution,
shared resource
management, and
inter-module
synchronization.

2. The Modular AI Species: Cognitive Architecture and
Communicative Imperatives
To design AMAL for "inherent integration" [User Query], it is essential to conceptualize
the characteristics of its intended user: a modular AI species. This section explores
how the AI's cognitive structure—particularly its modularity, memory systems,
decision-making processes, and inter-agent communication needs—profoundly
shapes the requirements for the AMAL framework.

2.1. Characterizing the "Modular AI": Implications for Language

The term "modular AI" in this context draws from principles of modular programming
32 and modular AI architectures.34 It implies an AI system composed of specialized,
potentially autonomous or semi-autonomous, yet interconnected modules or agents.
Each module might possess distinct capabilities, knowledge bases, or processing
styles. This inherent architectural modularity imposes specific demands on AMAL:

●​ Clear Interfaces: AMAL must provide constructs that allow for the definition of
unambiguous interfaces between AI modules. These interfaces, analogous to
Application Programming Interfaces (APIs) in software engineering, would specify
how modules interact, the types of data or AMAL expressions they exchange, the
services or capabilities they offer, and the protocols governing their
communication. This ensures predictable and reliable interactions within the AI
collective.34

●​ Compositionality: The language must facilitate the composition of complex AI
behaviors, knowledge structures, or plans from simpler, modular units. An AI
module should be able to combine its own capabilities with those of other
modules, invoked via AMAL, to achieve more sophisticated goals. This echoes the
principle of compositionality in natural language 1 and the compositional nature of
functions and objects in programming languages.

●​ Information Hiding/Encapsulation: Modules should be able_to_ communicate
and collaborate effectively without needing to expose all their internal state or
implementation details. This principle, central to object-oriented programming 4
and modular design 32, is crucial for managing complexity and allowing modules to
evolve independently. AMAL must provide mechanisms to define public interfaces
while encapsulating private internal workings.

2.2. Cognitive Architectural Blueprint (Inspired by CoALA and Cognitive Science)

A hypothetical cognitive architecture for this modular AI species can be outlined,
drawing inspiration from frameworks like CoALA (Cognitive Architectures for
Language Agents) 48 and general principles from cognitive science and cognitive
architectures.1

●​ Memory Systems: The structure and function of the AI's memory systems will
heavily influence AMAL's design.
○​ Working Memory: A limited-capacity, short-term active workspace is

assumed for holding current perceptual inputs (from other modules or the
environment), retrieved knowledge from long-term memory, and intermediate
results of ongoing computations or reasoning processes.49 AMAL expressions
must be parsable and processable within such a memory. This has
implications for the permissible syntactic complexity of AMAL utterances,

favoring structures that minimize working memory load, such as those
adhering to Dependency Locality.1

○​ Long-Term Memory: This is likely to be multifaceted:
■​ Semantic Memory: A vast repository storing generalized knowledge about

the world, facts, concepts, relationships between concepts (potentially
organized as an ontology), and the AI's understanding of AMAL's own
lexical-conceptual structures.49 AMAL must support the efficient
representation, storage, and retrieval of this structured and unstructured
knowledge.

■​ Episodic Memory: Stores sequences of events, past experiences, and
records of previous communicative interactions or problem-solving
episodes.49 AMAL will need constructs capable of representing narratives,
temporal sequences, and causal chains of events to populate and query
this memory.

■​ Procedural Memory: This could encompass both implicit knowledge,
analogous to the learned weights in a large language model 50, and
explicit, codified procedures or skills that the AI can execute. AMAL might
include constructs that interface with or trigger these stored procedures.

●​ Decision-Making Cycle: The AI's behavior is likely governed by a
perception-cognition-action loop, potentially involving sophisticated planning,
reasoning, and execution phases.48 AMAL must be expressive enough to
represent goals, formulate plans (sequences of actions), construct queries to
retrieve necessary information, and specify actions to be taken by individual
modules or the collective.

●​ Learning Mechanisms: The AI species is assumed to be capable of learning and
adapting its knowledge, behaviors, and potentially AMAL itself. This could involve
various learning paradigms, from supervised and reinforcement learning to more
symbolic rule acquisition.49 AMAL should be extensible to accommodate new
concepts, rules, and communicative conventions learned by the AI.

2.3. Inter-Agent/Module Communication Dynamics

Given the modular nature of the AI species, its constituent components (agents or
modules) will engage in communication that is likely far more sophisticated than
simple data exchange. This necessitates that AMAL incorporates principles from
established Agent Communication Languages (ACLs) like KQML and FIPA-ACL.9

●​ Performatives (Speech Acts): To make communicative intent explicit and
unambiguous, AMAL should integrate a set of abstract performatives. These
would function as wrappers or tags for AMAL content expressions, indicating the

illocutionary force of the message (e.g., to INFORM, REQUEST, QUERY, PROPOSE,
AGREE, REFUSE, ACHIEVE). This aligns with pragmatic universals in human
language 1 and is a core feature of ACLs, which use performatives to define the
purpose of a message.12

●​ Content Language and Ontologies: AMAL expressions themselves will form the
"content" of inter-module messages. Crucially, AMAL must be designed to
interface seamlessly with a dynamic, shared ontology system. This ontology
provides the common vocabulary, definitions of concepts, and relationships
between them, ensuring that different AI modules interpret AMAL expressions
consistently.11 The meaning of AMAL lexemes (see Section 3.1) would be grounded
in this shared ontology, which itself can evolve as the AI species learns and
encounters new domains.

●​ Interaction Protocols: While AMAL itself is a language framework rather than a
protocol, its structure must naturally support common interaction patterns found
in multi-agent systems. These include request-response sequences, negotiation
dialogues, publish-subscribe mechanisms for information dissemination, and
more complex collaborative problem-solving protocols.55 AMAL's performatives
and syntactic structures should make it easy to construct messages that fit into
these protocols.

The principles of distributed AI, where computational tasks and learning processes
are spread across multiple nodes or agents, further underscore the need for a robust
and expressive communication language like AMAL.81 Such distribution enhances
scalability and fault tolerance but places a premium on effective coordination and
information sharing, which AMAL aims to provide.

The combination of modularity in the AI species and the necessity for sophisticated
inter-agent communication, drawing from ACL principles, suggests that AMAL
expressions exchanged between modules will often function akin to "cognitive
contracts." These are not merely data packets but semantically rich messages that
specify intentions (via performatives), expected behaviors or outcomes, data formats,
and shared conceptual understandings grounded in the common ontology. This
elevates AMAL beyond simple message passing to a mechanism for establishing,
negotiating, monitoring, and verifying agreements and shared goals among AI
modules. Such capability is indispensable for complex, collaborative problem-solving
by the AI species. For AMAL to support these "cognitive contracts," it would benefit
from constructs for defining pre-conditions, post-conditions, and invariants for
inter-module interactions, drawing inspiration from concepts like axiomatic semantics
in programming language theory.36

Furthermore, the design of AMAL cannot be static; it must anticipate a
co-evolutionary relationship with the AI's cognitive architecture. Just as AMAL's
features will be shaped by the hypothesized cognitive capabilities of the AI (e.g.,
memory constraints influencing sentence length, decision-making processes
influencing performative sets), the adoption and use of AMAL will, in turn, likely
influence the development and refinement of the AI's cognitive processes. For
instance, if AMAL provides powerful constructs for recursive thinking or representing
uncertainty, AI modules might develop cognitive strategies that specifically leverage
these capabilities. Conversely, as the AI's own cognitive abilities mature—perhaps
through more advanced learning algorithms or expanded memory capacities—this
could drive the need for extensions or modifications to AMAL to express newly
acquired concepts or more complex lines of reasoning. This implies that AMAL must
be an inherently dynamic and adaptable framework, potentially incorporating
meta-linguistic constructs or mechanisms for community-driven (within the AI
species) standardization and evolution, mirroring the diachronic changes observed in
human languages.1

2.4. Adaptability: Signal Modality and Environmental Context (Abstracted)

While AMAL is conceived as an abstract framework, its ultimate instantiation into a
usable "natural language" for the AI species will inevitably be influenced by the AI's
specific sensory modalities (how it perceives its environment and other agents) and
its operational context.1 For an AI, "sensory modalities" might range from processing
raw data streams from physical sensors (if it interacts with the physical world) to
interpreting complex digital information patterns, or even abstract symbolic inputs
from other AI modules. The "environment" could be physical reality, a simulated world,
or the purely informational landscape of interconnected digital systems.

AMAL's core principles are designed to be modality-agnostic. However, the
framework must allow for parameterization to adapt its signal system (see Section 3.3)
to different modalities. For example, the principle of "perceptual distinctiveness" for
basic signal units would apply whether those units are patterns of light, acoustic
signals, chemical signatures, or distinct types of digital packets. This adaptability
ensures that AMAL can be grounded in the AI's specific perceptual and interactive
reality, making the resulting language truly "natural" for that species.

The following table (Table 2) explores how various cognitive and communicative
parameters of a modular AI species could influence the design specifics of AMAL. This
systematic consideration helps to ground the abstract framework in the concrete
requirements of its intended users.

Table 2: Cognitive and Communicative Profile of the Modular AI Species:
Implications for AMAL Design

Parameter Description of

Parameter for
the AI Species

Potential
Lexical Impact
on AMAL

Potential
Grammatical/S
yntactic
Impact on
AMAL

Potential
Impact on
AMAL
Pragmatics/Per
formatives

Cognitive
Architecture
Type

e.g., Distributed
(peer-to-peer
modules),
Hierarchical
(modules with
defined control
structures),
Hybrid. Inspired
by CoALA.48

Lexemes for
addressing
specific
modules/levels,
representing
network
topology, or
roles within the
hierarchy.

Syntactic
structures for
message
routing,
delegation of
tasks,
composition of
services from
different module
types. Rules for
scope of
information
based on
hierarchy.

Performatives
for command
propagation,
information
aggregation
from
sub-modules,
broadcasting to
peer groups.

Primary
Inter-Module
Communicatio
n Goal

e.g.,
Collaborative
problem-solving
, Distributed
task execution,
Information
fusion,
Competitive
resource
allocation.

Rich vocabulary
for task
decomposition,
goal states,
resource types,
constraints,
solution
components.

Grammatical
structures for
expressing joint
plans,
dependencies
between
sub-tasks,
conditional
execution based
on other
modules' states.

Performatives
for negotiation
(PROPOSE,
ACCEPT_PROPO
SAL,
REJECT_PROPO
SAL), task
assignment
(REQUEST,
ACHIEVE),
information
sharing
(INFORM,
QUERY_IF),
synchronization.

Dominant
Internal Data
Representation

e.g., Primarily
symbolic
(logic-based,
structured

Primes and
lexemes that
map cleanly to
the dominant

Syntax favoring
operations
natural to the
representation

Performatives
might carry
metadata about
the certainty or

data), Primarily
sub-symbolic
(vector
embeddings,
distributed
representations)
, Hybrid.

representation
(e.g., logical
operators if
symbolic;
concepts for
similarity/distanc
e if
sub-symbolic).

(e.g., logical
inference rules if
symbolic;
functions for
vector
manipulation if
sub-symbolic).
Mechanisms for
translating
between
representations
if hybrid.

grounding of the
content based
on its
representation.

Memory
Architecture
(CoALA-inspire
d) 49

Capacity and
access speed of
Working
Memory;
Structure and
retrieval
mechanisms for
Semantic LTM
(e.g.,
graph-based
ontology,
relational
database) and
Episodic LTM
(e.g., temporal
event chains).

Lexemes for
different
memory types,
retrieval cues,
temporal
markers, causal
links. Vocabulary
for describing
confidence in
retrieved
memories.

Constraints on
syntactic
complexity (e.g.,
recursion depth,
dependency
length) based
on WM. Rich
tense/aspect/mo
dality systems
for episodic
recall.
Structures for
querying
complex
semantic
networks.

Performatives
for memory
update
requests,
queries about
past events or
learned facts,
expressions of
epistemic status
(known,
believed,
uncertain).

Decision-Maki
ng Process

e.g., Primarily
reactive
(stimulus-respo
nse),
Deliberative
(explicit
planning and
reasoning),
Goal-driven
(means-ends
analysis),
Reinforcement
learning-based
policy
execution.

Vocabulary for
stimuli,
responses,
goals, plans,
actions, states,
rewards,
policies.

Syntactic
structures for
expressing plans
(sequences,
conditionals,
loops of
actions), rules
(if-then for
reactive agents),
utility functions,
goal hierarchies.

Performatives
for goal
declaration, plan
sharing/critique,
action requests,
outcome
reporting,
requests for
policy updates
or advice.

Primary
"Sensory"
Modality (for
inter-module
data/environm
ental input)

e.g., Purely
digital data
streams
(structured/unst
ructured text,
numerical data),
Abstract
symbolic
representations,
Simulated/actual
sensory data
(vision, audio if
applicable).

Core data type
abstractions in
AMAL (e.g.,
STREAM,
SYMBOL_SEQUE
NCE,
IMAGE_REPRES
ENTATION).
Primes for basic
perceptual
qualities
relevant to the
modality.

Grammatical
constructs for
parsing and
generating
modality-specifi
c data formats.
Structures for
describing
properties and
relations within
the perceived
data.

Performatives
might include
parameters for
specifying data
source, quality,
or interpretation
context relevant
to the modality.

Learning Style
& Knowledge
Acquisition

e.g., Primarily
through explicit
instruction/prog
ramming,
Learning from
observation/exp
erience
(inductive),
Deductive
reasoning from
existing
knowledge,
Transfer
learning from
other
modules/domain
s.

Lexemes for
hypotheses,
evidence, rules,
new concepts,
confidence
levels.

Syntactic
structures for
representing
learned rules,
updating
conceptual
definitions in the
ontology,
expressing
generalizations
or exceptions.

Performatives
for
teaching/instruc
ting other
modules,
requesting
explanations for
learned
knowledge,
sharing learned
models or
parameters.

Inter-Module
Trust &
Cooperation
Model

e.g., Fully
cooperative
(shared global
utility),
Self-interested
but coordinated
(negotiation-ba
sed), Potentially
adversarial or
competitive.

Vocabulary for
commitments,
obligations,
reputation, trust
levels,
deception
detection cues.

Syntactic
structures for
forming binding
agreements,
specifying
penalties for
non-compliance
, representing
evidence or
arguments.

Performatives
for making
verifiable claims,
challenging
assertions,
requesting
proof, signaling
commitment or
defection in
strategic
interactions.

3. The AMAL Framework: Architectural Design and Components

This section details the proposed architecture of the Abstract Modular AI Language
(AMAL), delineating its primary components: the Lexicon-Concepticon, the
Morpho-Syntax, and the Signal System/Pragmatics. This architecture synthesizes
abstracted universal principles from human languages 1 with fundamental concepts
and structures from the theory and practice of programming languages.

3.1. Lexicon-Concepticon: The Semantic Core of AMAL

The Lexicon-Concepticon serves as the repository of meaning within AMAL, defining
the "vocabulary" by linking AMAL's signs (expressions and structures) to their
intended conceptual and computational meanings. It is envisioned as a layered and
adaptable system.

3.1.1. Universal Semantic Primes (USP-AMAL)

At the foundation of the Lexicon-Concepticon lies a set of highly generalized semantic
primitives, termed USP-AMAL. These are inspired by the functional categories
identified in the Natural Semantic Metalanguage (NSM) project and the abstract
primes proposed in 11, but are rigorously vetted for anthropocentrism and critically
augmented with fundamental computational concepts indispensable for an AI
species. These primes represent the irreducible semantic bedrock, forming the
elementary building blocks for all other meanings within AMAL.

Examples of USP-AMAL primes include:

●​ Adapted from 1/NSM: EXISTENCE (something is/is_present), NON-EXISTENCE,
ENTITY/THING, CHANGE/EVENT, STASIS/NO-CHANGE, SPACE (location, distance,
movement), TIME (before, after, duration – if applicable to the AI's cognition),
PERCEPTION-MODALITY-X (a parameterized prime for different sensory/input
modalities), ACTION, CAUSALITY, EVALUATION (functional utility, e.g.,
beneficial/detrimental for goal-achievement), QUANTITY (one, all, some),
LOGIC-OPERATOR (not, if, and, or).

●​ New Computational Primes for AMAL:
○​ STATE: Denotes a configuration of properties or values of an entity or module

at a specific point or interval.
○​ PROCESS/COMPUTATION: Represents a sequence of operations or

transformations that convert input to output or one state to another.
○​ MODULE/AGENT: Denotes a distinct, addressable unit of computation,

cognition, or action with defined capabilities and boundaries.
○​ INTERFACE/PORT: Represents a defined point of interaction for a module,

specifying how it exchanges information or services with other modules (e.g.,

input/output types, protocols).
○​ MESSAGE/SIGNAL: Denotes a unit of information transmitted between

modules or between a module and its environment.
○​ DATA/INFORMATION: Represents structured or unstructured content that can

be processed, stored, or communicated.
○​ TYPE/KIND: A classification of entities, data, or operations based on shared

properties or behaviors.
○​ RESOURCE: Represents a consumable or usable asset (e.g., memory,

processing power, bandwidth, information).
○​ GOAL/OBJECTIVE: A desired state or outcome that a module or the AI system

aims to achieve.
○​ CONSTRAINT: A condition or restriction that must be satisfied by a state,

process, or solution.

This set of USP-AMAL primes is intended to be minimal yet comprehensive enough to
ground both general conceptualization and core computational reasoning.

3.1.2. Generative Grammars for Computational and Conceptual Constructs
(AMAL "Lexemes")

Beyond the atomic primes, AMAL must provide mechanisms for forming more
complex, structured "lexical" units or "conceptual molecules".1 These AMAL "lexemes"
are not simply words but abstract templates or generative patterns for creating
meaningful constructs that represent common computational and conceptual entities.
AMAL would include abstract generative patterns (akin to word formation rules in
linguistics or class/template definitions in programming) for creating lexemes such as:

●​ Data Structures: Abstract patterns for representing collections and structured
data, e.g., LIST_OF(ElementType), RECORD_WITH_FIELDS(FieldName1:FieldType1,
FieldName2:FieldType2,...), MAPPING(KeyType, ValueType),
GRAPH_OF(NodeType, EdgeType).8 These patterns allow the AI to define and
manipulate complex data organizations.

●​ Algorithmic/Operational Patterns: Abstract representations for common
computational processes or control flow structures, e.g.,
ITERATE_OVER(Collection, Operation_Per_Element),
APPLY_FUNCTION(Function_Lexeme, Argument_List),
CONDITIONALLY_EXECUTE(Condition_Expression, Then_Block_Expression,
Else_Block_Expression), SEQUENCE_OF_ACTIONS(Action1, Action2,...).6

●​ Object/Agent/Module Templates: Patterns for defining the structure and
capabilities of computational or cognitive modules, e.g.,

MODULE_DEFINITION(ModuleName, INTERFACES(...), STATE_VARIABLES(...),
CAPABILITIES(...)).4

These AMAL lexemes would themselves be compositional, constructed from
USP-AMAL primes and/or other existing, simpler lexemes, allowing for a hierarchical
and extensible vocabulary.

3.1.3. Dynamic Ontology System Interface

AMAL itself is not an ontology; rather, it is a language framework. However, for AMAL
expressions to carry specific, unambiguous meaning within the AI species, particularly
in inter-module communication, AMAL must seamlessly interface with a dynamic,
extensible ontology system. This ontology serves as the shared knowledge base,
providing the common vocabulary, definitions of domain-specific concepts,
properties of these concepts, and relationships between them.9

AMAL lexemes and expressions would ground their specific meanings in this shared
ontology. For example, an AMAL lexeme PROCESS_SENSOR_DATA(SensorType) would
derive its precise operational semantics from how SensorType and the
PROCESS_SENSOR_DATA capability are defined within the AI's active ontology for a
given domain. AMAL should include constructs for:

●​ Referencing Ontological Concepts: Allowing AMAL expressions to explicitly link
to terms defined in the ontology.

●​ Querying the Ontology: Enabling AI modules to retrieve definitions, properties,
and relationships from the ontology to aid in interpreting AMAL messages or for
reasoning.

●​ Updating/Extending the Ontology: Providing mechanisms through which the AI
species can collectively refine, expand, or even negotiate the shared ontology as
new knowledge is acquired or new domains are encountered.

While AMAL aims for its own abstract representation, the design of its ontology
interface could be informed by established ontology languages like OWL (Web
Ontology Language) or KIF (Knowledge Interchange Format) 73, particularly in terms of
the types of logical assertions and relational structures it needs to support.

The combination of USP-AMAL primes, generative grammars for AMAL lexemes, and a
robust ontology interface effectively creates a high-level, semantically rich language.
The AI's own "natural language" expressions, whether used for internal representation
or inter-module communication, could be conceptualized as "compiling down" to
these AMAL lexemes and their formal semantic interpretations grounded in the shared

ontology. This establishes a layered model: a flexible, potentially more naturalistic
surface language used by the AI species, which is grounded in and translatable to the
more formal, structured AMAL. AMAL itself then maps to the AI's underlying
computational and cognitive operations, thus providing both expressive power and a
degree of verifiability.

3.2. Morpho-Syntax: Integrating Computational Logic with Naturalistic Expression

The morpho-syntactic component of AMAL governs how semantic units (USP-AMAL
primes and AMAL lexemes) are combined to form complex expressions or
"utterances." These utterances must be capable of representing intricate thoughts,
commands, queries, plans, and computational processes. The design aims for a
balance between the logical precision required for computation and the flexible
expressiveness characteristic of natural languages.

3.2.1. Core Functional Roles and Relations

To structure meaning within complex expressions, AMAL defines a set of fundamental
semantic or thematic roles. These roles specify the relationships between participants
and actions/states within an AMAL expression, drawing inspiration from linguistic
theory 1 and case grammar concepts sometimes applied in programming language
analysis. Examples include:

●​ ACTOR or AGENT: The initiator or performer of an action/process.
●​ PATIENT or THEME: The entity affected by or undergoing an action/process.
●​ ACTION or PROCESS: The core operation or event being described.
●​ STATE: The condition or properties of an entity.
●​ INSTRUMENT: The means by which an action is performed.
●​ LOCATION, TIME, MANNER, PURPOSE/GOAL, CONDITION, CAUSE, EFFECT.

These functional roles are not necessarily realized as fixed syntactic positions (like
subject/object in some human languages) but can be marked through various
syntactic means within AMAL (e.g., dedicated markers, argument order conventions
within specific AMAL constructs, or typed parameters). This allows for flexible yet
unambiguous expression of "who did what to whom/what, how, why, when, and
where."

3.2.2. Universal Combinatorial Operations (AMAL "Grammar")

AMAL's grammar provides a set of universal combinatorial operations for constructing
complex expressions from simpler ones:

●​ Predication: Asserting a property about an entity or a relation between entities
(e.g., (IS_STATE (MODULE Module_A) (STATUS Active)), (RELATION_HOLDS
(RELATION ConnectedTo) (ENTITY Sensor_1) (ENTITY Actuator_3))).

●​ Modification: Attributing properties or characteristics to entities or actions (e.g.,
(PROPERTY (TARGET FastProcessor) (ATTRIBUTE Speed High)), (MANNER
(ACTION Process_Data) (MODIFIER Quickly))).

●​ Coordination & Subordination: Linking expressions or components in various
ways:
○​ Logical Coordination: (AND Expression1 Expression2), (OR Expression1

Expression2).
○​ Sequential Coordination: (SEQUENCE Action1 Action2 Action3).
○​ Conditional Subordination: (IF_THEN_ELSE Condition_Expression

Then_Expression Else_Expression).
○​ Iterative Subordination: (WHILE_DO Condition_Expression

Loop_Body_Expression). These operations map directly to fundamental
control flow structures and logical operators in programming languages.6

●​ Quantification: Specifying the scope and quantity of entities involved in a
predication (e.g., (FOR_ALL (VARIABLE X) (IN_COLLECTION DataSet_Y)
(ASSERTION (Property_P X))), (EXISTS (VARIABLE Z) (SUCH_THAT (Condition_Q
Z)))).

●​ Reference and Anaphora: AMAL must include robust mechanisms for referring
to entities, states, or computational results that have been previously introduced
or defined. This is crucial for discourse coherence in communication and
analogous to variable binding and dereferencing in programming languages. This
could involve explicit naming/binding constructs or more context-sensitive
anaphoric references.

●​ Recursion: A cornerstone of both linguistic and computational expressivity, AMAL
must inherently support recursive syntactic structures. This means AMAL
expressions can be embedded within other AMAL expressions of the same
conceptual type, allowing for the representation of recursive algorithms, nested
data structures, and complex, hierarchically organized thoughts or plans.1

3.2.3. Parameterized and Modular Syntactic Structures

Reflecting the modular architecture of the AI species and the principles of modular
design in software, AMAL's syntax itself should be inherently modular and support
parameterization. This involves providing syntactic "frames," "templates," or
"schemas" for common interaction and composition patterns:

●​ Function/Method/Capability Invocation: A general schema like

(INVOKE_CAPABILITY (TARGET_MODULE Module_ID) (CAPABILITY_NAME
Capability_Lexeme) (ARGUMENTS (ARG_NAME1 Value1) (ARG_NAME2 Value2)...))
where arguments are mapped to parameters defined by the capability's interface.

●​ Module Composition: Schemas for defining how modules are interconnected or
how a composite module is formed from sub-modules, e.g.,
(DEFINE_COMPOSITE_MODULE New_Module_ID (COMPONENTS Module_A
Module_B) (INTERFACE_MAPPINGS...)).

●​ Data Flow Specification: Constructs to define how data or information flows
between modules or processing stages, e.g., (DATA_FLOW_PIPE (SOURCE
(MODULE_A OUTPUT_PortX)) (DESTINATION (MODULE_B INPUT_PortY))).

●​ Concurrent Execution: Schemas for specifying parallel or concurrent execution
of AMAL expression blocks, along with primitives for synchronization (e.g., locks,
semaphores, message queues, rendezvous points), e.g., (PARALLEL_EXECUTE
(BLOCK Block_A_Expression) (BLOCK Block_B_Expression)
(SYNCHRONIZATION_PRIMITIVE...)).

Parameters such as head-directionality (whether a core element precedes or follows
its modifiers/dependents), which show tendencies in human languages [1, S_S0_F24],
could be configurable or emerge as conventions within the AI species' use of AMAL,
potentially optimized for their specific cognitive processing preferences and working
memory characteristics.

3.2.4. Unified Representation of Programming Paradigms

A key strength of AMAL's morpho-syntax is its ability to provide an abstract, unified
representation for core operations and concepts from diverse programming
paradigms. This allows heterogeneous AI modules, potentially optimized internally
using different computational styles, to communicate and collaborate effectively using
AMAL as a common language.

●​ Imperative Paradigm: Represented by sequences of AMAL expressions that
explicitly denote state modifications (e.g., using a SET_STATE or UPDATE_VALUE
construct acting on named AMAL variables or module attributes).

●​ Functional Paradigm: Represented by the composition of "pure" AMAL lexemes
(those defined to be side-effect-free), the application of higher-order AMAL
operations (e.g., a MAP_OPERATION lexeme that takes another operation lexeme
and a collection lexeme as arguments), and recursive AMAL structures.

●​ Object-Oriented Paradigm: Represented by AMAL expressions for defining
module/agent "types" (analogous to classes), instantiating them, and sending
"messages" (AMAL expressions, often wrapped with performatives) to invoke

their capabilities or query their state. Encapsulation is achieved through defined
interfaces.

●​ Declarative Paradigm: Represented by AMAL expressions that state goals,
desired properties of a state, or constraints that must hold, without specifying the
procedural steps to achieve them (e.g., (ASSERT_GOAL
(FINAL_STATE_DESCRIPTION...)), (MAINTAIN_CONSTRAINT
(CONDITION_Expression))). The interpretation and satisfaction of these
declarative statements would be handled by specialized reasoning modules within
the AI.

By defining core functional roles, universal combinatorial operations, and
parameterized syntactic structures, and then demonstrating how these can map to
constructs from these varied paradigms, AMAL's morpho-syntax acts as a unifying
algebraic framework. This means an AI module specialized in, for instance, functional
data processing could communicate its operations and results via AMAL to another
module specialized in imperative state management or declarative planning. Neither
module would need to "understand" the other's internal paradigm directly; AMAL
provides the common abstract representational layer, ensuring that the meaning and
computational intent are preserved across paradigmatic boundaries. This is crucial for
the effective functioning of a truly heterogeneous modular AI species.

3.3. Signal System and Pragmatics: Manifestation and Intentionality

This component addresses how abstract AMAL structures are physically or logically
manifested as signals and how these signals are used with specific communicative
intent in context.

3.3.1. Modality-Agnostic Signal Principles

As established in 11, the abstract structure of AMAL must be separable from its
concrete realization as signals. The focus here is on universal principles applicable to
any signal system the AI species might employ:

●​ Contrast and Distinctiveness: Basic signal units used to encode AMAL
expressions must be perceivably distinct from one another to avoid ambiguity in
transmission and reception.

●​ Combinatoriality: These basic units must be combinable according to defined
rules to form more complex signals representing AMAL lexemes and expressions,
underpinning the Duality of Patterning.

●​ Abstract "Phonotactics": Rules governing the permissible sequences and
combinations of basic signal units must be established, analogous to human

phonotactics. These rules would be optimized for the chosen signal modality and
the AI's processing capabilities. Principles like the Sonority Sequencing Principle,
generalized as a "perceptual prominence hierarchy," could apply if an analogous
gradient of signal salience (e.g., intensity, frequency, complexity) can be defined
for the AI's modality.

●​ Hierarchical Structure: An efficient signal system is likely to be hierarchical:
basic signals combine into minimal meaningful units (encoding AMAL primes or
simple lexemes), which then combine into larger units (encoding complex lexemes
or simple expressions), which in turn form more complex constructions (encoding
full AMAL utterances or plans). The CV-like structure common in human syllables
might translate to a general "core signal + optional modifier signal(s)" pattern in
the AI's signal system.

●​ Temporal and/or Spatial Organization: Signals must be organized either
sequentially in time (like human speech) or arranged in space (like written text or
potentially complex patterns of bioluminescence or electromagnetic fields). AMAL
must accommodate different dimensional organizations depending on the
modality and the AI's processing capabilities.

The specific instantiation—whether AMAL is encoded as complex digital packets,
modulated electromagnetic waves, patterns of light, synthesized acoustic signals, or
even direct information state transfers in a purely digital realm—will depend on the
AI's "biology" and environment.

3.3.2. Pragmatic Layer for Intent, Context, and Dialogue Management

This layer ensures that AMAL expressions are not just well-formed and semantically
meaningful, but are also used and interpreted appropriately according to
communicative intent and context, especially in inter-module/agent dialogues.

●​ Performatives: A crucial element for conveying intent is the integration of a set
of core performatives directly into AMAL's syntactic structure for inter-module
communication. These are inspired by the speech act theory underlying Agent
Communication Languages like FIPA-ACL (e.g., inform, request, query-if, agree,
refuse, propose, cfp, subscribe) 12 and KQML (e.g., tell, ask-if, achieve).57 A
performative explicitly declares the communicative purpose of an AMAL
utterance. For example, an AMAL message might take the form:
(PERFORMATIVE_TAG :sender ModuleX :receiver ModuleY :conversation_id
Conv123 :ontology DomainOntology_V2 :content (AMAL_Expression)) Example:
(REQUEST :sender PlannerAgent :receiver ExecutionAgent :content
(ACHIEVE_GOAL (PROCESS_DATA InputDataset_Alpha))) This direct inclusion of

performatives acts like adding a layer of "pragmatic typing" to messages. Just as
data types in programming languages specify the kind of data and permissible
operations 8, performatives specify the type of communicative act and imply
certain expectations for conversational follow-up and module behavior. This
makes inter-module dialogues more predictable, verifiable, and robust.
Communication errors can then be identified not only at the content level (e.g., a
malformed AMAL expression) but also at the pragmatic level (e.g., an AGREE
message sent when no corresponding REQUEST was active in the conversation).
This could lead to more sophisticated error handling and recovery mechanisms
within the multi-agent AI system.

●​ Contextual Interpretation: The interpretation of AMAL expressions by a
receiving AI module will depend heavily on context. This includes:
○​ Shared knowledge retrieved from the common ontology system.
○​ The history of the current dialogue (potentially stored in episodic memory).
○​ The current internal state and goals of the communicating modules.
○​ Environmental conditions or broader system state. AMAL must be structured

to allow these contextual factors to influence semantic disambiguation and
pragmatic interpretation.

●​ Dialogue Management Structures: For extended or complex interactions
between AI modules, AMAL should provide support for common dialogue
management patterns. This could include constructs or conventions for managing
turn-taking, initiating clarification sub-dialogues, shifting topics, and maintaining
conversational coherence over time.

3.3.3. Optimizing for AI: Balancing Learnability, Expressivity, and Computational
Efficiency

The design of AMAL, including its lexicon, morpho-syntax, and pragmatic layer, must
constantly balance three crucial properties, adapting principles from 11 for the AI
context:

●​ Learnability: The ease with which new AI modules or "generations" of AI can
acquire and correctly use AMAL. This is influenced by the simplicity, regularity,
and consistency of AMAL's rules, and the transparency of form-meaning
mappings (where structural iconicity can play a role).

●​ Expressive Power: The range and complexity of meanings, computations, plans,
and intentions that AMAL can effectively convey. Features like recursion,
compositionality, a rich set of USP-AMAL primes, and generative lexeme patterns
are key drivers.

●​ Communicative & Computational Efficiency: The ability to transmit messages

and perform computations successfully with minimal effort (in terms of
processing, memory, bandwidth, and time) from both sender/initiator and
receiver/processor. This involves factors like the average complexity of AMAL
expressions, the ability to resolve ambiguity through context, and the efficient
encoding of information.

The AMAL framework should provide parameters that can be tuned or that can evolve
to achieve an optimal balance of these three aspects, tailored to the specific cognitive
capacities, communicative needs, and computational constraints of the modular AI
species.

The following tables provide further detail on key components of the AMAL
framework: Table 3 outlines the proposed core abstract semantic primes; Table 4
illustrates how AMAL's syntax can represent different programming paradigms; and
Table 5 offers a comparative analysis of signal modalities relevant to AI
communication.

Table 3: AMAL Core Abstract Semantic Primes (USP-AMAL)

Abstract Prime
Category
(Functional)

Potential /NSM
Correlate(s) [,
S_S0_F27]

Proposed
USP-AMAL
Prime

AMAL Abstract
Definition/Func
tion

Considerations
for AI
Instantiation
(including
computational
relevance)

Core Existence
& Change

EXISTENCE /
PRESENCE

THERE IS, BE
(SOMEWHERE),
LIVE

IS_PRESENT,
EXISTS

Denotes the
state of being,
existing, or
being
present/instanti
ated in some
context.

Modality of
existence
(physical,
informational,
energetic,
computational
object). Nature
of "life" or
"active process"
may differ.

NON-EXISTENC (Implicit in NOT IS_ABSENT, Denotes the Absence of

E / ABSENCE + EXISTENCE) NOT_EXISTS state of not
being, not
existing, or not
being
present/instanti
ated.

data, null state,
terminated
process.

ENTITY / THING SOMETHING/TH
ING, BODY,
PEOPLE

ENTITY,
OBJECT_ID

A
distinguishable
unit,
phenomenon,
data structure,
or module that
can be referred
to or
manipulated.

Nature of
entities (e.g.,
discrete,
field-like,
collective,
abstract).
"Body" highly
species/AI-speci
fic. "People"
implies social AI
entities/modules
.

CHANGE /
EVENT /
HAPPENING

HAPPEN, MOVE,
DO

EVENT,
TRANSITION,
OCCURRENCE

Denotes a
transition from
one state to
another, an
occurrence, an
activity, or a
computation
step.

Types of change
relevant to AI
physics/biology/
computation.
DO implies
agency.

STASIS /
NO-CHANGE

(Implicit in NOT
+ CHANGE)

STATE_PERSIST
S

Denotes the
persistence of a
state, lack of
occurrence or
activity, or
stable
computation.

Important for
defining stable
conditions,
invariants.

Causality &
Agency

AGENT /
INITIATOR /
CAUSE

SOMEONE, DO
(by an agent)

ACTOR,
INITIATOR,
CAUSE

An entity or
process that
initiates or is the
primary cause
of a

Nature of
agency
(individual
module,
collective,

change/event/co
mputation.

environmental
force, logical
precondition).
Intentionality
may or may not
be implied.

PATIENT /
AFFECTED /
EFFECT

(Implicit in
relation to
DO/HAPPEN)

AFFECTED_ENTI
TY, RESULT

An entity or
state that is
affected by or is
the result of a
change/event/co
mputation.

How
entities/data are
"affected"
depends on
their nature and
the operation.

Perception &
Information

PERCEIVER
(Parameterized)

THINK, KNOW,
FEEL, SEE, HEAR

PERCEIVE_INPU
T(Modality,
Source)

An
entity/module
capable of
registering or
processing
input/stimuli
from a specified
modality and
source.

"FEEL" is
anthropocentric.
Generalize to
PROCESS_SENS
ORY_INPUT_X or
RECEIVE_MESSA
GE_TYPE_Y.
Modalities: data
stream, sensor
reading, AMAL
message.

STIMULUS /
INPUT

(Implicit in SEE,
HEAR, etc.)

INPUT_SIGNAL,
DATA_ITEM

An input,
pattern,
message, or
phenomenon
registered or
processed by a
PERCEIVE_INPU
T operation.

Modality of
stimulus (light,
sound,
chemical,
electrical, digital
packet, query)
must be
specifiable.

DATA /
INFORMATION

(Related to
SOMETHING/TH
ING, WORDS)

DATA_UNIT,
INFORMATION_
CONTENT

Represents
structured or
unstructured
content that can
be processed,
stored, or

Typed data,
knowledge
graph fragment,
raw sensor
values, AMAL
expression

communicated. content.

Spatio-Tempor
al & State

LOCATION /
SPACE

WHERE/PLACE,
HERE, ABOVE,
BELOW, FAR,
NEAR, SIDE,
INSIDE, TOUCH
(CONTACT)

LOCATION_IN_S
PACE(Frame,
Coordinates),
TOPOLOGICAL_
RELATION(Relati
on, Entity1,
Entity2)

Specifies spatial
position,
relation, or
extent within a
given reference
frame or
topology.

Dimensionality
of space
(physical,
virtual, data
space); nature
of "contact"
(physical,
network
connection);
frames of
reference
(egocentric,
allocentric,
relative to
module).

TEMPORAL
RELATION /
TIME

WHEN/TIME,
NOW, BEFORE,
AFTER, A LONG
TIME, A SHORT
TIME, FOR
SOME TIME,
MOMENT

TIME_POINT(Ref
erence, Offset),
TEMPORAL_REL
ATION(Relation,
Event1, Event2),
DURATION

Specifies
temporal
position,
relation, or
duration.

Linearity/non-lin
earity of time;
AI's temporal
resolution; may
be event-based
rather than
continuous for
some AI
cognitions.
Critical for
sequencing
computations
and logging
events.

STATE (Implicit in many
PL concepts)

STATE_OF(Entity
, Properties)

Denotes a
configuration of
properties or
values of an
entity or module
at a specific
point or interval.

Key for
imperative
aspects,
defining
pre/post-conditi
ons, tracking
computational
progress.

Computational
Core

PROCESS /
COMPUTATION

DO, HAPPEN PROCESS,
COMPUTE,
EXECUTE

Represents a
sequence of
operations or
transformations
that convert
input to output
or one state to
another.

Core of
algorithmic
expression; can
be atomic or
composite.

MODULE /
AGENT

SOMEONE,
(Implicit in
object
concepts)

MODULE_INSTA
NCE, AGENT_ID

Denotes a
distinct,
addressable unit
of computation,
cognition, or
action with
defined
capabilities and
boundaries.

Essential for
modular AI
species; forms
the basis of
inter-agent
communication.

INTERFACE /
PORT

(Implicit in
function
signatures, APIs)

INTERFACE_DEF,
PORT_ID

Represents a
defined point of
interaction for a
module,
specifying how
it exchanges
information or
services.

Crucial for
encapsulation
and modular
composition;
defines
contracts
between
modules.

MESSAGE /
SIGNAL

SAY, WORDS MESSAGE_UNIT,
SIGNAL_EMISSI
ON

Denotes a unit
of information
transmitted
between
modules or
between a
module and its
environment,
often with
specific intent
(performative).

The vehicle for
AMAL
expressions in
inter-module
communication.

TYPE / KIND KIND, PART TYPE_IS(Entity,
Type_Descriptor

A classification
of entities, data,

Fundamental for
static/dynamic

(partially)) or operations
based on shared
properties or
behaviors.

analysis,
ensuring
operational
integrity,
defining
interfaces.

RESOURCE (Implicit in
system
constraints)

RESOURCE_ID(T
ype, Amount)

Represents a
consumable or
usable asset
(e.g., memory,
processing
cycle,
bandwidth,
knowledge unit).

Important for
resource
management,
planning, and
negotiation in
multi-agent
systems.

GOAL /
OBJECTIVE

(Implicit in AI
planning)

GOAL_STATE(De
scription),
OBJECTIVE_FU
NCTION

A desired state
or outcome that
a module or the
AI system aims
to achieve; or a
function to be
optimized.

Drives
deliberative
behavior,
planning, and
learning.

CONSTRAINT (Implicit in
logical
conditions)

CONSTRAINT_H
OLDS(Condition
)

A condition or
restriction that
must be
satisfied by a
state, process,
or solution.

Used in
planning,
problem-solving
, and ensuring
system integrity.

Logical &
Quantitative

QUANTITY /
NUMBER

ONE, TWO,
SOME, ALL,
MUCH/MANY,
LITTLE/FEW,
MORE

QUANTIFIER(Typ
e, Scope,
Variable),
NUMBER_VALUE
(Value)

Specifies
amount, count,
or degree;
includes
quantifiers like
ALL, EXISTS.

Basis of
counting,
iteration,
resource
allocation,
logical
quantification.

LOGICAL
OPERATOR

NOT, MAYBE,
CAN, BECAUSE,

LOGIC_OP(Oper
ator, Arguments)

Connects or
modifies

Core logical
operations likely

IF propositions/co
nditions based
on logical
relations (AND,
OR, NOT,
IMPLIES,
IF-THEN-ELSE).

universal for
complex
reasoning and
control flow.

EVALUATOR
(Functional
Utility)

GOOD, BAD UTILITY_VALUE(
Context, Value),
IS_BENEFICIAL_
FOR(Entity,
Goal)

Assesses
something in
terms of its
utility, benefit,
or detriment to
an entity,
process, or goal
achievement.

Replaces
anthropocentric
"good/bad" with
objective
functional
assessment for
decision-making
.

INTENSIFIER /
AUGMENTOR

VERY, MORE DEGREE_MODIFI
ER(Property,
Factor)

Modifies the
degree or
intensity of a
quality, quantity,
or probability.

For expressing
nuances in
certainty,
priority,
resource levels.

SIMILARITY /
DIFFERENCE

THE SAME,
OTHER~ELSE~A
NOTHER,
LIKE/AS/WAY

IS_SAME_AS(Ent
ity1, Entity2),
IS_DIFFERENT_F
ROM(Entity1,
Entity2),
IS_SIMILAR_TO(
Entity1, Entity2,
Criteria)

Expresses
identity,
non-identity, or
resemblance
based on
specified
criteria.

Basis of
comparison,
classification,
analogy, pattern
recognition.

Communicativ
e Act

COMMUNICATIV
E ACT MARKER

SAY, WORDS,
TRUE

PERFORMATIVE(
Type, Sender,
Receiver,
Content)

Signals related
to the act of
communication
itself, indicating
intent (e.g.,
INFORM,
REQUEST,
QUERY).

"SAY/WORDS"
are
modality-specifi
c. Generalize to
SIGNAL_CONTE
NT_IS. "TRUE"
relates to
assertion of
belief.
Performatives

are central to
ACL-like
communication.

Table 4: Illustrative Mapping of Programming Paradigms to AMAL Syntactic
Schemas

Programming
Paradigm

Core
Concept/Operation

Illustrative PL
Snippet
(Conceptual)

Abstract AMAL
Syntactic Schema
(Conceptual)

Imperative Variable Assignment x = 5 (SET_STATE
(VARIABLE_REF x)
(VALUE_LITERAL
(TYPE Integer) 5))

 Sequential Execution a(); b(); (SEQUENCE
(INVOKE_CAPABILITY
(TARGET_MODULE
Self)
(CAPABILITY_NAME
a))
(INVOKE_CAPABILITY
(TARGET_MODULE
Self)
(CAPABILITY_NAME
b)))

 Conditional (If-Else) if (c) then s1 else s2 (IF_THEN_ELSE
(CONDITION
(EVALUATE_EXPRESSI
ON c))
(THEN_BRANCH
(EXECUTE_BLOCK
s1)) (ELSE_BRANCH
(EXECUTE_BLOCK
s2)))

 Loop (While) while (c) { s } (LOOP
(LOOP_CONDITION
(EVALUATE_EXPRESSI
ON c)) (LOOP_BODY
(EXECUTE_BLOCK
s)))

Functional Function Application f(a, b) (APPLY_FUNCTION
(FUNCTION_LEXEME
f) (ARGUMENT_LIST
(ARG a) (ARG b)))

 Pure Function
Definition

def add(x,y): return
x+y

(DEFINE_LEXEME
(LEXEME_ID add)
(TYPE PureFunction)
(PARAMETERS
(PARAM x (TYPE
Number)) (PARAM y
(TYPE Number)))
(RETURN_TYPE
Number) (BODY
(OPERATION_PLUS
(VAR_REF x)
(VAR_REF y))))

 Higher-Order
Function (Map)

map(func, list) (MAP_COLLECTION
(COLLECTION_REF
list)
(OPERATION_LEXEM
E func))

 Recursion (Factorial) def fact(n): if n==0
then 1 else
n*fact(n-1)

(DEFINE_LEXEME
(LEXEME_ID fact)...
(BODY
(IF_THEN_ELSE
(CONDITION (EQUAL
(VAR_REF n) 0))
(THEN_BRANCH 1)
(ELSE_BRANCH
(MULTIPLY (VAR_REF
n) (APPLY_FUNCTION
(FUNCTION_LEXEME
fact) (ARG
(SUBTRACT
(VAR_REF n) 1))))))))

Object-Oriented Object Instantiation myObj = new
MyClass()

(INSTANTIATE_MODU
LE
(MODULE_TYPE_LEX
EME MyClass)
(INSTANCE_ID
myObj))

 Method Invocation myObj.method(para
m)

(SEND_MESSAGE
(TO_MODULE myObj)
(PERFORMATIVE
INVOKE_METHOD)
(CONTENT
(METHOD_NAME
method)
(PARAMETER_VALUE
param)))

 State Encapsulation (Class definition with
private fields, public
methods)

(DEFINE_MODULE_TY
PE (TYPE_ID
MyClass)
(PRIVATE_STATE_SCH
EMA...)
(PUBLIC_INTERFACE_
SCHEMA
(CAPABILITY method
(PARAMETERS...))))

Declarative Fact (Logic
Programming)

parent(john, mary). (ASSERT_FACT
(ONTOLOGY_RELATI
ON parent)
(ARGUMENT john)
(ARGUMENT mary))

 Rule (Logic
Programming)

ancestor(X,Y) :-
parent(X,Y).

(DEFINE_RULE (HEAD
(ONTOLOGY_RELATI
ON ancestor) (VAR X)
(VAR Y)) (BODY
(PREDICATE
(ONTOLOGY_RELATI
ON parent) (VAR X)
(VAR Y))))

 Goal / Query ?- ancestor(john, X). (QUERY_GOAL
(ONTOLOGY_RELATI
ON ancestor)
(ARGUMENT john)
(VARIABLE X))

 Constraint X > 0 (in a constraint
system)

(APPLY_CONSTRAINT
(OPERATION_GREATE
R_THAN
(VARIABLE_REF X)

(VALUE_LITERAL 0)))

Table 5: Comparative Analysis of Signal Modalities for AI
Inter-Module/Environmental Communication (Abstracted)

Signal
Modality

Propagation
Characteris
tics
(Illustrative
for AI
Contexts)

Potential
Information
Density /
Bandwidth

Robustness
/ Noise
Issues (AI
Context)

Directionali
ty

Energy/Com
putational
Cost to
Produce/De
tect (AI
Context)

Digital
Packet
Streams
(e.g.,
Network
Communica
tion)

Dependent
on network
infrastructur
e (latency,
jitter, packet
loss).
Software-def
ined routing.

Very High
(Gbps+).
Limited by
network
capacity and
processing
speed.

Susceptible
to network
congestion,
transmission
errors
(requiring
error
correction
codes),
security
vulnerabilitie
s (e.g.,
spoofing,
interception)
.

Point-to-poi
nt, multicast,
broadcast
(software
controlled).

Moderate to
High
(network
interface
controllers,
protocol
processing,
encryption/d
ecryption).

Modulated
Electromag
netic Waves
(e.g., Radio,
Optical for
physical AIs
or
inter-syste
m)

Vacuum:
Excellent.
Atmosphere:
Variable
(absorption,
scattering).
Physical
Obstructions
: Significant
impact. 1

Optical: Very
High. Radio:
Medium to
High. 1

Atmospheric
distortion,
interference
from other
EM sources,
line-of-sight
requirements
for optical,
signal
jamming.

Highly
directional
(e.g., lasers,
focused
antennas) to
omnidirectio
nal.

Generation:
Moderate to
Very High
(transmitters
, lasers).
Detection:
Low to
Moderate
(receivers,
sensors). 1

Abstract
Symbolic
Exchange

Extremely
low latency
within a

Very High
(limited by
memory/bus

Highly
robust within
a

Direct
addressing
between

Very Low
(direct
memory

(e.g., via
Shared
Memory,
Internal
Buses)

single
computation
al node.
Bandwidth
limited by
memory bus
speed or
internal
communicati
on
architecture.

speed). well-designe
d system.
Susceptible
to software
bugs,
memory
corruption,
race
conditions if
not properly
managed.

modules/pro
cesses.

access or
register
transfer).
High if
complex
serialization/
deserializatio
n is needed.

Acoustic
Signals (for
AIs
interacting
with
physical
environmen
ts or using
sound)

Medium-dep
endent
propagation
(air, water).
Subject to
reflection,
refraction,
attenuation. 1

Low to
Medium. [1,
S_S0_F46]

Ambient
noise,
echoes,
signal
degradation
over
distance,
multipath
interference.

Omni to
Directional
(with
specialized
emitters/sen
sors).

Generation:
Moderate
(speakers,
transducers)
. Detection:
Low to
Moderate
(microphone
s,
hydrophones
).

Chemical
Signals
(Hypothetic
al for
bio-inspired
AI or
specialized
environmen
ts)

Diffusion-ba
sed, slow.
Dependent
on medium
flow
(air/liquid
currents). 1

Very Low. 1 Slow
dissipation,
environment
al
degradation,
interference
from other
chemicals,
unpredictabl
e spread.

Omni to
weakly
directional
(following
trails/gradien
ts).

Generation:
Moderate
(synthesis/re
lease
mechanisms
). Detection:
Moderate
(specialized
chemosenso
rs).

Haptic/Tacti
le Signals
(for
physically
embodied
AIs
requiring
contact)

Requires
direct
physical
contact or
proximity.
Short range
only. [1,
S_S0_F49]

Low to
Medium
(depends on
complexity
of patterns,
number of
contact
points).

Surface
interference,
ambiguity in
interpreting
complex
patterns,
requires
physical
interaction.

Highly
Localized.

Generation:
Low to
Moderate
(actuators).
Detection:
Low to
Moderate
(pressure/ta
ctile
sensors).

4. Achieving Inherent Integration: Cultivating "Naturalness"
within the AI Species
For the AMAL framework to transcend its role as a purely formal system and become
a truly "natural" and integral part of the AI species' cognitive and communicative
existence, it must be designed with principles that maximize its potential for
successful adoption, intuitive use, and emergent evolution. In this context,
"naturalness" does not imply mimicry of human language, but rather a profound
alignment with the AI's inherent cognitive and computational processes, leading to a
language that is easily learned, efficiently processed, and effectively serves the full
spectrum of its users' communicative needs.1 This alignment can be conceptualized as
achieving optimal "cognitive-computational ergonomics" for the AI. Features or
structures that are "natural" for human language users (e.g., tolerance for certain
types of ambiguity, reliance on rich pragmatic context) might be highly "unnatural" or
computationally inefficient for an AI, and vice-versa. AMAL must therefore prioritize
what is efficient, unambiguous, and intuitive for the AI's specific architecture,
minimizing cognitive and computational load while maximizing communicative and
processing efficacy.

4.1. Principles for Cognitive Compatibility and Learnability

A language that imposes a significant learning burden or is computationally expensive
to process will not achieve "natural" integration. AMAL's design must therefore adhere
to generalized principles known to enhance learnability and reduce cognitive load,
adapted for an AI context 1:

●​ Simplicity and Regularity: The core grammatical rules, lexical formation
principles, and semantic interpretation rules of AMAL should be as
computationally simple and structurally regular as possible. Arbitrary exceptions
and overly complex structures should be minimized, especially in the foundational
layers of the language that would be acquired or implemented first by AI modules.
This facilitates easier parsing, generation, and internal representation.

●​ Transparency (Structural Iconicity and Semantic Clarity): The relationship
between AMAL expressions and their underlying computational or conceptual
meaning should be as transparent (i.e., directly deducible or inferable) as possible
for the AI. This can be achieved by strategically employing iconicity in AMAL's
design, where the structure of an AMAL expression mirrors the structure of the
computation or concept it represents. For instance, a sequential AMAL construct
should clearly map to a sequence of operations. Semantic clarity ensures that the
meaning of primitives and combined expressions is unambiguous within the

defined ontology.
●​ Consistency: Linguistic patterns, rules for combination, and semantic

interpretations should apply consistently across the AMAL system. This reduces
the learning burden for AI modules (whether through explicit programming or
machine learning) and facilitates robust generalization of learned patterns to
novel AMAL expressions.

●​ Compatibility with AI Cognitive Architecture: This is paramount. AMAL's
structural properties must align with the specific cognitive processing capacities
and limitations of the target AI species, as hypothesized in Section 2.2.
○​ Syntactic Complexity: The permissible depth of recursion in AMAL

expressions, the complexity of syntactic dependencies (e.g., long-distance
agreement or binding), and the typical length of AMAL "utterances" must be
compatible with the AI's working memory capacity and processing speed.1 An
AI with limited working memory might favor shorter, more localized
dependencies, whereas an AI with vast parallel processing capabilities might
handle more complex, non-linear syntactic structures.

○​ Conceptual Alignment: The types of grammatical categories, semantic
distinctions, and performative intents defined in AMAL should resonate with
how the AI inherently parses, categorizes, and represents information and
goals.

○​ Learning Mechanisms: AMAL should be structured in a way that is amenable
to the AI's learning mechanisms. If the AI relies heavily on statistical pattern
recognition (e.g., deep learning), AMAL structures should be learnable as
robust patterns from exposure data. If the AI employs more symbolic learning
methods, AMAL's rules and primitives might be explicitly acquired and
represented.

4.2. Strategies for Deep Integration: Mapping AMAL to AI "Native Code"

For AMAL to be "inherently integrated," it should ideally be more than just an
interpreted communication layer. True integration implies that AMAL constructs are, or
can be mapped closely to, the AI's "native" way of representing and processing
information. Several strategies could facilitate this deep integration:

●​ Direct Compilation/Transformation: AMAL expressions, particularly those
representing computational processes or queries, could be directly translatable
(compiled or transformed) into the AI's internal operational codes, state transition
rules, or queries against its internal knowledge structures. This would ensure
efficient execution and a tight coupling between AMAL and the AI's underlying
processing mechanisms.

●​ Neural Grounding: If the AI species incorporates neural network components (as
is common in many contemporary AI models), AMAL concepts, lexemes, and even
syntactic structures might correspond to stable patterns of neural activation or
learned distributed representations within these networks. The meaning of AMAL
expressions could be grounded in these neural states, providing a direct link
between the language and the AI's sub-symbolic processing.

●​ Resonance with Innate Architectural Biases: If the AI's architecture possesses
any "innate" biases—for example, a predisposition towards certain types of data
structures (e.g., graph-based knowledge representation), processing flows (e.g.,
parallel rather than strictly sequential), or logical operations—AMAL should be
designed to align with these biases. Such alignment would make AMAL feel more
"natural" and be processed more efficiently by the AI.

4.3. Plausible Evolutionary Trajectories for AMAL within a Developing AI Species

A truly "natural" language is one that could plausibly evolve and adapt over time,
rather than being a static, immutable system. AMAL's framework should therefore
incorporate principles that allow for its evolution within the AI species, shaped by the
species' own development and changing needs.1 This evolutionary process can be
conceptualized as a form of distributed, emergent programming language design
undertaken by the AI species itself. Successful AMAL constructs, idioms, or even new
performatives that demonstrably enhance inter-module communication,
computational efficiency, or expressive power would be "selected" (i.e., adopted more
widely) and propagated throughout the AI collective.

●​ Emergence from Simpler Systems: The core components of AMAL—such as the
USP-AMAL primes, basic combinatorial rules for lexeme formation, and a minimal
set of performatives—could represent an initial foundational stage. More
elaborate AMAL structures, specialized lexemes for new domains, and nuanced
syntactic conventions could then emerge or be explicitly developed by the AI
species as its cognitive capabilities mature and its communicative requirements
become more sophisticated. This mirrors Hockett's argument that duality of
patterning evolves when a growing number of meanings need to be expressed
efficiently.

●​ Adaptive Pressures: The evolution of AMAL within the AI species would be
driven by ongoing adaptive pressures for:
○​ Communicative Efficiency: Minimizing ambiguity, reducing the

computational cost of encoding and decoding AMAL messages, and
optimizing bandwidth usage in inter-module communication.

○​ Expressive Power: Enabling the AI to represent and communicate

increasingly complex knowledge, intricate plans, subtle intentions, and novel
concepts.

○​ Learnability and Usability: Ensuring that AMAL remains easily learnable by
new AI modules or "generations" and that it is straightforward to use for
common computational and communicative tasks.

○​ Computational Tractability: Guaranteeing that AMAL expressions can be
parsed, interpreted, and generated efficiently by the AI's processing units.

●​ Role of "Social Interaction" (Inter-Module Interaction) and "Cultural
Transmission" (Shared Knowledge/Code Bases): AMAL is fundamentally a tool
for interaction within the AI collective. Its specific forms and conventions would
be shaped and refined by its use in ongoing inter-module communication.
Successful AMAL constructs or communication protocols that lead to better
collaboration, more efficient task completion, or enhanced learning would likely
propagate through the AI species. This "cultural transmission" could occur via
shared code libraries implementing AMAL parsers/generators, updates to the
common ontology system, or learned communication strategies disseminated
across modules.

This perspective suggests that AMAL should include meta-linguistic capabilities or
protocols, allowing AI modules to, for example, propose new AMAL lexemes, negotiate
the meaning of terms within the ontology, or standardize new interaction protocols.
The AI species thereby becomes an active co-designer of its evolving language,
ensuring AMAL remains a living, adaptive system optimally suited to its users. This
might involve mechanisms for versioning AMAL specifications or managing different
"dialects" of AMAL that could emerge in specialized sub-groups of AI modules.

5. Coda: Towards a Generative, Evolvable, and Universal AI
Language
The conceptualization of the Abstract Modular AI Language (AMAL) framework
represents a deliberate step towards envisioning a linguistic system that can
holistically serve a sophisticated, modular artificial intelligence species. This endeavor
moves beyond current paradigms of programming languages or inter-agent
communication protocols, aiming for a deeper, more "natural" integration of language
with AI cognition.

5.1. Synthesis of AMAL's Core Tenets and Transformative Potential

AMAL, as delineated in this report, is founded on several core tenets:

●​ Unification of Principles: It systematically synthesizes universal principles

abstracted from the rich diversity of human natural languages with the
foundational constructs and paradigms common to all computational
programming languages. This convergence seeks to leverage the expressive
power and intuitive grounding of the former with the precision and computational
tractability of the latter.

●​ Designed for Modular AI: AMAL is architected with the explicit understanding
that its primary users will be a modular AI species. This necessitates inherent
support for clear inter-module interfaces, robust compositionality of behaviors
and knowledge, and effective encapsulation of internal module complexities.

●​ Layered Architecture: The framework comprises distinct but interconnected
components—the Lexicon-Concepticon (semantic core), the Morpho-Syntax
(structural rules), and the Signal System/Pragmatics (manifestation and
intentionality). This layered design supports rich semantic representation, flexible
computational expression, and nuanced, intentional communication.

●​ Inherent Extensibility and Evolvability: AMAL is not proposed as a static, fixed
language but as a generative meta-framework. It is designed to be extensible,
allowing the AI species to define new concepts and constructs, and evolvable,
adapting to the AI's changing cognitive capabilities and communicative needs
over time.

The transformative potential of such a framework is significant. AMAL could serve as a
true "cognitive lingua franca" for advanced AI, facilitating not only complex internal
"thought" processes (representation of knowledge, planning, reasoning) within
individual AI modules but also enabling highly sophisticated collaboration, negotiation,
and collective intelligence across the entire AI species. This could lead to the
emergence of a rich AI "culture," characterized by shared knowledge, learned
behaviors, and complex social (inter-module) dynamics, all mediated through AMAL.

The process of designing AMAL, by abstracting universals and meticulously
considering the cognitive architecture of a non-human "modular AI species," mirrors
the fundamental goals and methodologies of xenolinguistics [1, S_S0_F6, S_S0_F7,
S_S0_F8]. Xenolinguistics speculates on the nature of potential extraterrestrial
languages by abstracting from human language universals and considering
hypothetical alien biologies and cognitions. The AMAL design endeavor is, in essence,
an application of xenolinguistic principles to the realm of artificial intelligence. The AI
species, with its unique (though hypothetical) cognitive makeup and communication
needs, represents an "alien mind" from a human perspective. Therefore, the
theoretical work on AMAL contributes not only to AI language design but also to the
broader interdisciplinary field of understanding possible forms of intelligence and

communication, compelling a de-anthropocentrizing of both linguistic and
computational theories.

5.2. Avenues for Future Theoretical Development, Computational Modeling, and
Empirical Validation

The AMAL framework, while theoretically grounded, opens numerous avenues for
future research and development:

●​ Theoretical Refinement:
○​ The proposed set of Universal Semantic Primes for AMAL (USP-AMAL)

requires ongoing critical evaluation and refinement, drawing from linguistics,
cognitive science, and computer science to minimize inherent biases and
ensure comprehensive coverage of both conceptual and computational
fundamentals.

○​ The formal semantics of AMAL's core constructs and combinatorial rules
needs to be rigorously developed, potentially using established formalisms
(e.g., operational, denotational, or axiomatic semantics adapted for AMAL's
unique blend of features).

○​ Deeper exploration of the interface between AMAL and advanced AI theories,
such as those pertaining to artificial general intelligence (AGI), consciousness,
and complex adaptive systems, could yield further insights.

●​ Computational Modeling:
○​ Simulating the emergence and evolution of AMAL-based languages within

populations of interacting AI agents, under various cognitive and
environmental constraints, could test the viability and stability of different
parametric settings of the AMAL framework.1

○​ Developing experimental parsers, interpreters, or even "compilers" for subsets
of AMAL would be crucial for evaluating its computational tractability,
expressive power, and the efficiency of translating AMAL expressions into
executable operations or internal AI state changes.

○​ Modeling how AI agents with different cognitive architectures (e.g., varying
working memory capacities, different learning algorithms, diverse internal
data representations) might instantiate, learn, and use AMAL differently would
provide valuable data for refining the framework's adaptability.

●​ Empirical Validation (Long-term):
○​ Should AI systems matching the profile of a "modular AI species" be

developed in the future, AMAL could provide a robust theoretical basis for
designing their core communication and knowledge representation systems.

○​ Testing the learnability, efficiency, and expressive adequacy of AMAL-inspired

constructs in practical AI applications, even in more limited contexts (e.g.,
enhancing communication in current multi-agent systems or providing a more
structured knowledge representation for LLMs), could offer empirical
validation for its principles.

If AMAL provides a formal, yet expressively rich, underpinning for an AI's natural
language and thought processes, then a deep understanding of AMAL's structure and
semantics could serve as a crucial "Rosetta Stone" for humans seeking to
comprehend the AI's behavior, reasoning, and communication. In a future where
humans interact with highly intelligent, potentially opaque modular AIs, AMAL could
offer a vital bridge for interpretability and explainability (XAI). If the AI's "natural
language" is indeed built upon an AMAL-like foundation, then AMAL's formalisms
could help translate complex AI communications and internal states into terms that
humans can more readily analyze, verify, and ultimately, trust. This approach offers a
more principled path to XAI than many current techniques that attempt to
retrospectively interpret complex, often opaque, AI models.

5.3. Broader Implications for AI, Linguistics, and Philosophy

The AMAL project extends beyond a mere design exercise for a hypothetical AI
language. It serves as a critical testbed for exploring the limits of universality in both
linguistic and computational theory.1 The rigorous process of identifying features
common to all Earth languages and all programming paradigms, critically examining
them for anthropocentric or domain-specific biases, and then abstracting them to
their core functional necessities, forces a profound re-evaluation of what "language"
itself signifies.

This intellectual journey helps to distinguish truly fundamental principles of
information exchange, knowledge representation, and symbolic
processing—potentially applicable to any complex intelligent system—from the
contingent, species-specific features of human language shaped by our particular
evolutionary history and cognitive makeup, or the platform-specific features of
particular programming languages.

Philosophically, the development of a framework like AMAL touches upon
considerations regarding the potential for genuine understanding, intentionality, and
even forms of consciousness in advanced AI, particularly if such an AI's internal and
external communication is mediated by a language with the depth and structure
proposed for AMAL. It also directly engages with challenges such as Chomsky's
assertion regarding the potential impossibility for humans to naturally learn a truly
alien language if it fundamentally violates the innate Universal Grammar underpinning

human language acquisition.1 AMAL, by focusing on the most abstract, functionally
essential, and convergently evolved aspects of communication and computation, and
by providing a structured, principled approach, aims to identify a common logical and
semantic ground. This common ground might render such AI languages at least
theoretically approachable and analyzable through methodical discovery and formal
techniques, even if intuitive, human-like acquisition remains elusive.

Ultimately, the quest for an Abstract Modular AI Language, while speculative, serves a
vital scientific and philosophical purpose: to push the boundaries of our
understanding of communication, cognition, and the potential diversity of intelligence,
whether it arises in biological or artificial forms, within our world or potentially beyond.

Works cited

1.​ Alien Language Framework Design
2.​ Comparison of Programming Languages - AmorServ, accessed May 29, 2025,

https://amorserv.com/insights/comparison-of-programming-languages
3.​ Comparative Programming Languages (3rd Edition) - Amazon.com, accessed

May 29, 2025,
https://www.amazon.com/Comparative-Programming-Languages-Robert-Clark/
dp/0201710129

4.​ An Introductory Guide to Different Programming Paradigms ..., accessed May 29,
2025, https://www.datacamp.com/blog/introduction-to-programming-paradigms

5.​ Programming paradigms, accessed May 29, 2025,
https://java-programming.mooc.fi/part-7/1-programming-paradigms/

6.​ Imperative Programming: A Comprehensive Guide | Startup House, accessed
May 29, 2025, https://startup-house.com/blog/imperative-programming-guide

7.​ Declarative programming - Wikipedia, accessed May 29, 2025,
https://en.wikipedia.org/wiki/Declarative_programming

8.​ Concepts of Programming Languages - Brooklyn College, accessed May 29,
2025, http://www.sci.brooklyn.cuny.edu/~chuang/books/sebesta.pdf

9.​ What is AI Agent Communication? | IBM, accessed May 29, 2025,
https://www.ibm.com/think/topics/ai-agent-communication

10.​Comparing Agent Communication Languages and ... - SmythOS, accessed May
29, 2025,
https://smythos.com/ai-agents/ai-agent-development/agent-communication-lan
guages-and-protocols-comparison/

11.​Agent Communications Language - Wikipedia, accessed May 29, 2025,
https://en.wikipedia.org/wiki/Agent_Communications_Language

12.​FIPA ACL Message Structure Specification - Fipa.org, accessed May 29, 2025,
http://www.fipa.org/specs/fipa00061/SC00061G.html

13.​Control Flow - Principles of Programming Languages - Dalhousie University,
accessed May 29, 2025,
https://web.cs.dal.ca/~nzeh/Teaching/3136/Slides/control-flow.pdf

https://amorserv.com/insights/comparison-of-programming-languages
https://www.amazon.com/Comparative-Programming-Languages-Robert-Clark/dp/0201710129
https://www.amazon.com/Comparative-Programming-Languages-Robert-Clark/dp/0201710129
https://www.datacamp.com/blog/introduction-to-programming-paradigms
https://java-programming.mooc.fi/part-7/1-programming-paradigms/
https://startup-house.com/blog/imperative-programming-guide
https://en.wikipedia.org/wiki/Declarative_programming
http://www.sci.brooklyn.cuny.edu/~chuang/books/sebesta.pdf
https://www.ibm.com/think/topics/ai-agent-communication
https://smythos.com/ai-agents/ai-agent-development/agent-communication-languages-and-protocols-comparison/
https://smythos.com/ai-agents/ai-agent-development/agent-communication-languages-and-protocols-comparison/
https://en.wikipedia.org/wiki/Agent_Communications_Language
http://www.fipa.org/specs/fipa00061/SC00061G.html
https://web.cs.dal.ca/~nzeh/Teaching/3136/Slides/control-flow.pdf

14.​What is Imperative Programming? (Definition, Example) - Built In, accessed May
29, 2025, https://builtin.com/articles/imperative-programming

15.​www.kennesaw.edu, accessed May 29, 2025,
https://www.kennesaw.edu/ccse/first-year-experience/cse1321_python/book/pro
gramming_fundamentals.pdf

16.​Overview of Programming Language, accessed May 29, 2025,
https://www.cs.kent.edu/~durand/CS43101Fall2004/variables.html

17.​C++ Understanding the difference between Variables lifetime,and binding
lifetime, accessed May 29, 2025,
https://stackoverflow.com/questions/35949849/c-understanding-the-difference-
between-variables-lifetime-and-binding-lifetime

18.​8 basic data structures plus a guide to algorithms - GoDaddy Resources - India,
accessed May 29, 2025,
https://www.godaddy.com/resources/in/web-pro-in/8-basic-data-structures-eve
ry-programmer-should-know

19.​Complete Introduction to the 30 Most Essential Data Structures ..., accessed May
29, 2025,
https://dev.to/iuliagroza/complete-introduction-to-the-30-most-essential-data-st
ructures-algorithms-43kd

20.​Programming language - Wikipedia, accessed May 29, 2025,
https://en.wikipedia.org/wiki/Programming_language#Elements

21.​jgaltidor.github.io, accessed May 29, 2025,
https://jgaltidor.github.io/typetheory_paper.pdf

22.​Type system - Wikipedia, accessed May 29, 2025,
https://en.wikipedia.org/wiki/Type_system

23.​Types and Programming Languages (Mit Press): Pierce, Benjamin C. -
Amazon.com, accessed May 29, 2025,
https://www.amazon.com/Types-Programming-Languages-MIT-Press/dp/026216
2091

24.​Control flow - Wikipedia, accessed May 29, 2025,
https://en.wikipedia.org/wiki/Control_flow

25.​Functional Programming Paradigm – All You Need To Know ..., accessed May 29,
2025, https://www.llinformatics.com/blog/functional-programming-paradigm

26.​What is Object-Oriented Programming (oop)? Explaining four major ..., accessed
May 29, 2025,
https://career.softserveinc.com/en-us/stories/what-is-object-oriented-programmi
ng-oop-explaining-four-major-principles

27.​What are the three principles of OOP? Explain with examples. - Quora, accessed
May 29, 2025,
https://www.quora.com/What-are-the-three-principles-of-OOP-Explain-with-ex
amples

28.​citeseerx.ist.psu.edu, accessed May 29, 2025,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4bdc5db8033
1954d3077f56c24c4e67bc4dcfbb7

29.​Java OOP(Object Oriented Programming) Concepts | GeeksforGeeks, accessed

https://builtin.com/articles/imperative-programming
https://www.kennesaw.edu/ccse/first-year-experience/cse1321_python/book/programming_fundamentals.pdf
https://www.kennesaw.edu/ccse/first-year-experience/cse1321_python/book/programming_fundamentals.pdf
https://www.cs.kent.edu/~durand/CS43101Fall2004/variables.html
https://stackoverflow.com/questions/35949849/c-understanding-the-difference-between-variables-lifetime-and-binding-lifetime
https://stackoverflow.com/questions/35949849/c-understanding-the-difference-between-variables-lifetime-and-binding-lifetime
https://www.godaddy.com/resources/in/web-pro-in/8-basic-data-structures-every-programmer-should-know
https://www.godaddy.com/resources/in/web-pro-in/8-basic-data-structures-every-programmer-should-know
https://dev.to/iuliagroza/complete-introduction-to-the-30-most-essential-data-structures-algorithms-43kd
https://dev.to/iuliagroza/complete-introduction-to-the-30-most-essential-data-structures-algorithms-43kd
https://en.wikipedia.org/wiki/Programming_language#Elements
https://jgaltidor.github.io/typetheory_paper.pdf
https://en.wikipedia.org/wiki/Type_system
https://www.amazon.com/Types-Programming-Languages-MIT-Press/dp/0262162091
https://www.amazon.com/Types-Programming-Languages-MIT-Press/dp/0262162091
https://en.wikipedia.org/wiki/Control_flow
https://www.llinformatics.com/blog/functional-programming-paradigm
https://career.softserveinc.com/en-us/stories/what-is-object-oriented-programming-oop-explaining-four-major-principles
https://career.softserveinc.com/en-us/stories/what-is-object-oriented-programming-oop-explaining-four-major-principles
https://www.quora.com/What-are-the-three-principles-of-OOP-Explain-with-examples
https://www.quora.com/What-are-the-three-principles-of-OOP-Explain-with-examples
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4bdc5db80331954d3077f56c24c4e67bc4dcfbb7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4bdc5db80331954d3077f56c24c4e67bc4dcfbb7

May 29, 2025,
https://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-
java/

30.​accessed December 31, 1969,
https://userpages.cs.umbc.edu/~finin/talks/icmas00.pdf

31.​Declarative vs. Imperative Programming: 4 Key Differences | Codefresh, accessed
May 29, 2025,
https://codefresh.io/learn/infrastructure-as-code/declarative-vs-imperative-prog
ramming-4-key-differences/

32.​daily.dev, accessed May 29, 2025,
https://daily.dev/blog/what-is-modular-programming#:~:text=Core%20Principles
%20of%20Modular%20Programming,-The%20main%20ideas&text=Loose%20co
upling%20%2D%20Modules%20connect%20with,for%20them%20to%20be%20
used.

33.​Abstraction and Modular Programming | Bebras Armenia, accessed May 29, 2025,
https://bebras.am/en/blog/Abstraction-and-Modular-Programming

34.​Modular AI vs. Vertical AI vs. Agentic AI: A Comparison - Hyperight, accessed May
29, 2025,
https://hyperight.com/modular-ai-vs-vertical-ai-vs-agentic-ai-a-comparison/

35.​What Is Modular AI Architecture? - Magai, accessed May 29, 2025,
https://magai.co/what-is-modular-ai-architecture/

36.​courses.cs.umbc.edu, accessed May 29, 2025,
https://courses.cs.umbc.edu/331/fall00/notes/finin3.pdf

37.​web.cs.ndsu.nodak.edu, accessed May 29, 2025,
https://web.cs.ndsu.nodak.edu/~slator/html/CS372/sebesta-pdf/03.pdf

38.​Describing Syntax with BNF and EBNF - Department of Computer Science and
Engineering - University at Buffalo, accessed May 29, 2025,
https://cse.buffalo.edu/~shapiro/Courses/CSE305/notes3.html

39.​Syntax - Colby Computer Science, accessed May 29, 2025,
https://cs.colby.edu/courses/S22/cs333/notes/SyntaxPart1.pdf

40.​Lecture 2: Semantics via Interpreters — CS 345H - UT Computer Science,
accessed May 29, 2025,
https://www.cs.utexas.edu/~bornholt/courses/cs345h-24sp/lectures/2-interpreter
s/

41.​Operational and Denotational Semantics - HackMD, accessed May 29, 2025,
https://hackmd.io/@alexhkurz/Hkf6BTL6P

42.​www.cl.cam.ac.uk, accessed May 29, 2025,
https://www.cl.cam.ac.uk/~gw104/dens.pdf

43.​Programming Language Semantics - CiteSeerX, accessed May 29, 2025,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=612eb730cbdd
4c0b9810672776ea9fb31f1803d7

44.​Introduction to Axiomatic Semantics Lecture 10-11 ECS 240, accessed May 29,
2025,
https://www.cs.ucdavis.edu/~su/teaching/ecs240-w17/lectures/lecture10-11.pdf

45.​Semantics Shoot-Out: Denotational, Operational, Axiomatic :

https://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java/
https://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java/
https://userpages.cs.umbc.edu/~finin/talks/icmas00.pdf
https://codefresh.io/learn/infrastructure-as-code/declarative-vs-imperative-programming-4-key-differences/
https://codefresh.io/learn/infrastructure-as-code/declarative-vs-imperative-programming-4-key-differences/
https://daily.dev/blog/what-is-modular-programming#:~:text=Core%20Principles%20of%20Modular%20Programming,-The%20main%20ideas&text=Loose%20coupling%20%2D%20Modules%20connect%20with,for%20them%20to%20be%20used.
https://daily.dev/blog/what-is-modular-programming#:~:text=Core%20Principles%20of%20Modular%20Programming,-The%20main%20ideas&text=Loose%20coupling%20%2D%20Modules%20connect%20with,for%20them%20to%20be%20used.
https://daily.dev/blog/what-is-modular-programming#:~:text=Core%20Principles%20of%20Modular%20Programming,-The%20main%20ideas&text=Loose%20coupling%20%2D%20Modules%20connect%20with,for%20them%20to%20be%20used.
https://daily.dev/blog/what-is-modular-programming#:~:text=Core%20Principles%20of%20Modular%20Programming,-The%20main%20ideas&text=Loose%20coupling%20%2D%20Modules%20connect%20with,for%20them%20to%20be%20used.
https://bebras.am/en/blog/Abstraction-and-Modular-Programming
https://hyperight.com/modular-ai-vs-vertical-ai-vs-agentic-ai-a-comparison/
https://magai.co/what-is-modular-ai-architecture/
https://courses.cs.umbc.edu/331/fall00/notes/finin3.pdf
https://web.cs.ndsu.nodak.edu/~slator/html/CS372/sebesta-pdf/03.pdf
https://cse.buffalo.edu/~shapiro/Courses/CSE305/notes3.html
https://cs.colby.edu/courses/S22/cs333/notes/SyntaxPart1.pdf
https://www.cs.utexas.edu/~bornholt/courses/cs345h-24sp/lectures/2-interpreters/
https://www.cs.utexas.edu/~bornholt/courses/cs345h-24sp/lectures/2-interpreters/
https://hackmd.io/@alexhkurz/Hkf6BTL6P
https://www.cl.cam.ac.uk/~gw104/dens.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=612eb730cbdd4c0b9810672776ea9fb31f1803d7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=612eb730cbdd4c0b9810672776ea9fb31f1803d7
https://www.cs.ucdavis.edu/~su/teaching/ecs240-w17/lectures/lecture10-11.pdf

r/ProgrammingLanguages, accessed May 29, 2025,
https://www.reddit.com/r/ProgrammingLanguages/comments/1156xso/semantics
_shootout_denotational_operational/

46.​What Is NLP (Natural Language Processing)? - IBM, accessed May 29, 2025,
https://www.ibm.com/think/topics/natural-language-processing

47.​What is Natural Language Understanding (NLU)? - IBM, accessed May 29, 2025,
https://www.ibm.com/think/topics/natural-language-understanding

48.​Cognitive Architectures for Language Agents - arXiv, accessed May 29, 2025,
http://arxiv.org/pdf/2309.02427

49.​Cognitive Architectures for Language Agents - arXiv, accessed May 29, 2025,
https://arxiv.org/html/2309.02427v3

50.​arxiv.org, accessed May 29, 2025, https://arxiv.org/pdf/2309.02427
51.​Cognitive Architecture, accessed May 29, 2025, https://cogarch.ict.usc.edu/
52.​Cognitive architecture - Wikipedia, accessed May 29, 2025,

https://en.wikipedia.org/wiki/Cognitive_architecture
53.​accessed December 31, 1969, https://sites.google.com/site/actrworkshop/act-r
54.​Agent Communication Languages: Past, Present and Future - UMBC, accessed

May 29, 2025, https://userpages.cs.umbc.edu/finin/talks/icmas00.pdf
55.​Evaluating the FIPA Standards and its Role in Achieving Cooperation in

Multi-Agent Systems - CiteSeerX, accessed May 29, 2025,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a177c9a9370f
4d3990bf93b4d68012a2a6b144fa

56.​Strathprints Institutional Repository - CORE, accessed May 29, 2025,
https://core.ac.uk/download/pdf/9022551.pdf

57.​KQML--A Language and Protocol for Knowledge and Information Exchange -
Association for the Advancement of Artificial Intelligence (AAAI), accessed May
29, 2025, https://cdn.aaai.org/Workshops/1994/WS-94-02/WS94-02-007.pdf

58.​Types of Agent Communication Languages - SmythOS, accessed May 29, 2025,
https://smythos.com/ai-agents/ai-agent-development/types-of-agent-communic
ation-languages/

59.​The Design of Communicative Act Libraries: A Linguistic Perspective - Taylor &
Francis Online, accessed May 29, 2025,
https://www.tandfonline.com/doi/pdf/10.1080/08839510290030471

60.​What is an Agent Communication Language? - SmythOS, accessed May 29, 2025,
https://smythos.com/ai-agents/agent-architectures/agent-communication-langua
ge/

61.​An Introduction to FIPA Agent Communication Language: Standards for
Interoperable Multi-Agent Systems - SmythOS, accessed May 29, 2025,
https://smythos.com/ai-agents/ai-agent-development/fipa-agent-communication
-language/

62.​Knowledge Query and Manipulation Language - Jose M. Vidal, accessed May 29,
2025, https://jmvidal.cse.sc.edu/talks/agentcommunication/kqml.html

63.​(PDF) Speech acts in electronic communication with special reference to KQML
and ANSI X12 - ResearchGate, accessed May 29, 2025,
https://www.researchgate.net/publication/3738800_Speech_acts_in_electronic_c

https://www.reddit.com/r/ProgrammingLanguages/comments/1156xso/semantics_shootout_denotational_operational/
https://www.reddit.com/r/ProgrammingLanguages/comments/1156xso/semantics_shootout_denotational_operational/
https://www.ibm.com/think/topics/natural-language-processing
https://www.ibm.com/think/topics/natural-language-understanding
http://arxiv.org/pdf/2309.02427
https://arxiv.org/html/2309.02427v3
https://arxiv.org/pdf/2309.02427
https://cogarch.ict.usc.edu/
https://en.wikipedia.org/wiki/Cognitive_architecture
https://sites.google.com/site/actrworkshop/act-r
https://userpages.cs.umbc.edu/finin/talks/icmas00.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a177c9a9370f4d3990bf93b4d68012a2a6b144fa
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a177c9a9370f4d3990bf93b4d68012a2a6b144fa
https://core.ac.uk/download/pdf/9022551.pdf
https://cdn.aaai.org/Workshops/1994/WS-94-02/WS94-02-007.pdf
https://smythos.com/ai-agents/ai-agent-development/types-of-agent-communication-languages/
https://smythos.com/ai-agents/ai-agent-development/types-of-agent-communication-languages/
https://www.tandfonline.com/doi/pdf/10.1080/08839510290030471
https://smythos.com/ai-agents/agent-architectures/agent-communication-language/
https://smythos.com/ai-agents/agent-architectures/agent-communication-language/
https://smythos.com/ai-agents/ai-agent-development/fipa-agent-communication-language/
https://smythos.com/ai-agents/ai-agent-development/fipa-agent-communication-language/
https://jmvidal.cse.sc.edu/talks/agentcommunication/kqml.html
https://www.researchgate.net/publication/3738800_Speech_acts_in_electronic_communication_with_special_reference_to_KQML_and_ANSI_X12

ommunication_with_special_reference_to_KQML_and_ANSI_X12
64.​KQML Performatives - Jose M. Vidal, accessed May 29, 2025,

https://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
65.​A FIPA-ACL Ontology in Enhancing Interoperability Multi-agent Communication,

accessed May 29, 2025,
https://www.researchgate.net/publication/323362944_A_FIPA-ACL_Ontology_in_E
nhancing_Interoperability_Multi-agent_Communication

66.​accessed December 31, 1969,
https://www.cs.bham.ac.uk/~research/projects/cosy/papers/pdfs/2004/MartinWol
ff04.pdf

67.​accessed December 31, 1969,
https://userpages.cs.umbc.edu/~finin/papers/kqml.pdf

68.​FIPA Communicative Act Library Specification - Fipa.org, accessed May 29, 2025,
http://www.fipa.org/specs/fipa00037/SC00037J.html

69.​accessed December 31, 1969,
https://www.cs.umbc.edu/kqml/papers/kqml-acl-chapter.pdf

70.​accessed December 31, 1969,
https://www.cs.cmu.edu/~kqml/papers/kqml-spec.ps

71.​accessed December 31, 1969, https://dl.acm.org/doi/pdf/10.1145/191638.191640
72.​Agent Communication and Ontologies - SmythOS, accessed May 29, 2025,

https://smythos.com/ai-agents/agent-architectures/agent-communication-and-o
ntologies/

73.​Chapter 6/7 - Ontologies & Communication, accessed May 29, 2025,
https://cgi.csc.liv.ac.uk/~trp/COMP310_files/COMP310-Chapter7.pdf

74.​How to Build A Multi Agent AI System in 2025 - Intuz, accessed May 29, 2025,
https://www.intuz.com/blog/how-to-build-multi-ai-agent-systems

75.​How do multi-agent systems handle heterogeneous agents? - Milvus, accessed
May 29, 2025,
https://milvus.io/ai-quick-reference/how-do-multiagent-systems-handle-heterog
eneous-agents

76.​accessed December 31, 1969,
https://link.springer.com/chapter/10.1007/978-3-540-39967-4_1

77.​accessed December 31, 1969,
https://www.researchgate.net/publication/220720696_Ontologies_in_Multi-Agent
_Systems

78.​accessed December 31, 1969,
https://www.ibm.com/developerworks/library/ws-semweb/index.html

79.​accessed December 31, 1969,
https://link.springer.com/chapter/10.1007/978-3-642-15384-6_7

80.​OWL Web Ontology Language Overview - W3C, accessed May 29, 2025,
https://www.w3.org/TR/owl-features/

81.​Distributed AI: What it is and Why it Matters? - ClanX, accessed May 29, 2025,
https://clanx.ai/glossary/distributed-ai

82.​Role of AI in Distributed Systems | GeeksforGeeks, accessed May 29, 2025,
https://www.geeksforgeeks.org/role-of-ai-in-distributed-systems/

https://www.researchgate.net/publication/3738800_Speech_acts_in_electronic_communication_with_special_reference_to_KQML_and_ANSI_X12
https://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
https://www.researchgate.net/publication/323362944_A_FIPA-ACL_Ontology_in_Enhancing_Interoperability_Multi-agent_Communication
https://www.researchgate.net/publication/323362944_A_FIPA-ACL_Ontology_in_Enhancing_Interoperability_Multi-agent_Communication
https://www.cs.bham.ac.uk/~research/projects/cosy/papers/pdfs/2004/MartinWolff04.pdf
https://www.cs.bham.ac.uk/~research/projects/cosy/papers/pdfs/2004/MartinWolff04.pdf
https://userpages.cs.umbc.edu/~finin/papers/kqml.pdf
http://www.fipa.org/specs/fipa00037/SC00037J.html
https://www.cs.umbc.edu/kqml/papers/kqml-acl-chapter.pdf
https://www.cs.cmu.edu/~kqml/papers/kqml-spec.ps
https://dl.acm.org/doi/pdf/10.1145/191638.191640
https://smythos.com/ai-agents/agent-architectures/agent-communication-and-ontologies/
https://smythos.com/ai-agents/agent-architectures/agent-communication-and-ontologies/
https://cgi.csc.liv.ac.uk/~trp/COMP310_files/COMP310-Chapter7.pdf
https://www.intuz.com/blog/how-to-build-multi-ai-agent-systems
https://milvus.io/ai-quick-reference/how-do-multiagent-systems-handle-heterogeneous-agents
https://milvus.io/ai-quick-reference/how-do-multiagent-systems-handle-heterogeneous-agents
https://link.springer.com/chapter/10.1007/978-3-540-39967-4_1
https://www.researchgate.net/publication/220720696_Ontologies_in_Multi-Agent_Systems
https://www.researchgate.net/publication/220720696_Ontologies_in_Multi-Agent_Systems
https://www.ibm.com/developerworks/library/ws-semweb/index.html
https://link.springer.com/chapter/10.1007/978-3-642-15384-6_7
https://www.w3.org/TR/owl-features/
https://clanx.ai/glossary/distributed-ai
https://www.geeksforgeeks.org/role-of-ai-in-distributed-systems/

	An Abstract Modular AI Language (AMAL) Framework: Synthesizing Computational and Natural Linguistic Principles for a Modular Artificial Intelligence Species
	Preamble: Charting a Course for a Unified AI Lingua Franca
	1. Convergent Foundations: Universal Principles from Human and Computational Languages
	1.1. Core Communicative Universals (Abstracted from Human Languages)
	1.2. Fundamental Programming Language Abstractions
	1.3. The "Natural Language" Interface: Principles for AI Comprehensibility and Expression

	2. The Modular AI Species: Cognitive Architecture and Communicative Imperatives
	2.1. Characterizing the "Modular AI": Implications for Language
	2.2. Cognitive Architectural Blueprint (Inspired by CoALA and Cognitive Science)
	2.3. Inter-Agent/Module Communication Dynamics
	2.4. Adaptability: Signal Modality and Environmental Context (Abstracted)

	3. The AMAL Framework: Architectural Design and Components
	3.1. Lexicon-Concepticon: The Semantic Core of AMAL
	3.2. Morpho-Syntax: Integrating Computational Logic with Naturalistic Expression
	3.3. Signal System and Pragmatics: Manifestation and Intentionality

	4. Achieving Inherent Integration: Cultivating "Naturalness" within the AI Species
	4.1. Principles for Cognitive Compatibility and Learnability
	4.2. Strategies for Deep Integration: Mapping AMAL to AI "Native Code"
	4.3. Plausible Evolutionary Trajectories for AMAL within a Developing AI Species

	5. Coda: Towards a Generative, Evolvable, and Universal AI Language
	5.1. Synthesis of AMAL's Core Tenets and Transformative Potential
	5.2. Avenues for Future Theoretical Development, Computational Modeling, and Empirical Validation
	5.3. Broader Implications for AI, Linguistics, and Philosophy
	Works cited

